Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 145: 107227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387400

RESUMO

Multidrug-resistant (MDR) pathogens are severely impacting our ability to successfully treat common infections. Here we report the synthesis of a panel of adarotene-related retinoids showing potent antimicrobial activity on Staphylococcus aureus strains (including multidrug-resistant ones). Fluorescence and molecular dynamic studies confirmed that the adarotene analogues were able to induce conformational changes and disfunctions to the cell membrane, perturbing the permeability of the phospholipid bilayer. Since the major obstacle for developing retinoids is their potential cytotoxicity, a selected candidate was further investigated to evaluate its activity on a panel of human cell lines. The compound was found to be well tolerated, with IC50 5-15-fold higher than the MIC on S. aureus strains. Furthermore, the adarotene analogue had a good pharmacokinetic profile, reaching a plasma concentration of about 6 µM after 0.5 h after administration (150 mg/kg), at least twice the MIC observed against various bacterial strains. Moreover, it was demonstrated that the compound potentiated the growth-inhibitory effect of the poorly bioavailable rifaximin, when used in combination. Overall, the collected data pave the way for the development of synthetic retinoids as potential therapeutics for hard-to-treat infectious diseases caused by antibiotic-resistant Gram-positive pathogens.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos , Retinoides/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762650

RESUMO

Novel amino-substituted pyridoquinazolinone derivatives have been designed and synthesized as potential c-MYC G-quadruplex (G4) ligands, employing an efficient methodology. All the new compounds exhibited moderate to good antiproliferative activity against the human osteosarcoma U2OS cell line. NMR and docking experiments revealed that the recently synthesized compounds interact with the Pu22 G-quadruplex in the c-MYC promoter region, establishing a 2:1 complex, with each molecule positioned over the tetrads at the 3'- and 5'-ends.


Assuntos
Neoplasias Ósseas , Quadruplex G , Osteossarcoma , Humanos , Linhagem Celular , Regiões Promotoras Genéticas
3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36769028

RESUMO

The fulfilment of the European "Farm to Fork" strategy requires a drastic reduction in the use of "at risk" synthetic pesticides; this exposes vulnerable agricultural sectors-among which is the European risiculture-to the lack of efficient means for the management of devastating diseases, thus endangering food security. Therefore, novel scaffolds need to be identified for the synthesis of new and more environmentally friendly fungicides. In the present work, we employed our previously developed 3D model of P. oryzae cytochrome bc1 (cyt bc1) complex to perform a high-throughput virtual screening of two commercially available compound libraries. Three chemotypes were selected, from which a small collection of differently substituted analogues was designed and synthesized. The compounds were tested as inhibitors of the cyt bc1 enzyme function and the mycelium growth of both strobilurin-sensitive (WT) and -resistant (RES) P. oryzae strains. This pipeline has permitted the identification of thirteen compounds active against the RES cyt bc1 and five compounds that inhibited the WT cyt bc1 function while inhibiting the fungal mycelia only minimally. Serendipitously, among the studied compounds we identified a new chemotype that is able to efficiently inhibit the mycelium growth of WT and RES strains by ca. 60%, without inhibiting the cyt bc1 enzymatic function, suggesting a different mechanism of action.


Assuntos
Ascomicetos , Fungicidas Industriais , Citocromos b/metabolismo , Ascomicetos/metabolismo , Fungicidas Industriais/farmacologia , Estrobilurinas/farmacologia , Complexo III da Cadeia de Transporte de Elétrons
4.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769058

RESUMO

Stilbenoids are anti-inflammatory and antioxidant compounds, with resveratrol being the most investigated molecule in this class. However, the actions of most other stilbenoids are much less studied. This study compares five monomeric (resveratrol, piceatannol, pterostilbene, pinostilbene, and trimethoxy-resveratrol) and two dimeric (dehydro-δ-viniferin and trans-δ-viniferin) stilbenoids for their capability to modulate the production of bacteria-induced cytokines (IL-12, IL-10, and TNF-α), as well as lipopolysaccharide (LPS)-induced reactive oxygen species (ROS), in murine bone marrow-derived dendritic cells. All monomeric species showed dose-dependent inhibition of E. coli-induced IL-12 and TNF-α, whereas only resveratrol and piceatannol inhibited IL-10 production. All monomers, except trimethoxy-resveratrol, inhibited L. acidophilus-induced IL-12, IL-10, and TNF-α production. The dimer dehydro-δ-viniferin remarkably enhanced L. acidophilus-induced IL-12 production. The contrasting effect of resveratrol and dehydro-δ-viniferin on IL-12 production was due, at least in part, to a divergent inactivation of the mitogen-activated protein kinases by the two stilbenoids. Despite having moderate to high total antioxidant activity, dehydro-δ-viniferin was a weak inhibitor of LPS-induced ROS formation. Conversely, resveratrol and piceatannol potently inhibited LPS-induced ROS formation. Methylated monomers showed a decreased antioxidant capacity compared to resveratrol, also depending on the methylation site. In summary, the immune-modulating effect of the stilbenoids depends on both specific structural features of tested compounds and the stimulating bacteria.


Assuntos
Citocinas , Estilbenos , Camundongos , Animais , Resveratrol/farmacologia , Lipopolissacarídeos/farmacologia , Antioxidantes/farmacologia , Interleucina-10 , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Medula Óssea , Escherichia coli , Estilbenos/farmacologia , Estilbenos/química , Interleucina-12 , Células Dendríticas
5.
Molecules ; 28(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067507

RESUMO

Ovarian cancer ranks as the eighth most prevalent form of cancer in women across the globe and stands as the third most frequent gynecological cancer, following cervical and endometrial cancers. Given its resistance to standard chemotherapy and high recurrence rates, there is an urgent imperative to discover novel compounds with potential as chemotherapeutic agents for treating ovarian cancer. Chalcones exhibit a wide array of biological properties, with a particular focus on their anti-cancer activities. In this research, we documented the synthesis and in vitro study of a small library of chalcone derivatives designed for use against high-grade serous ovarian cancer (HGSOC) cell lines, specifically OVCAR-3, OVSAHO, and KURAMOCHI. Our findings revealed that three of these compounds exhibited cytotoxic and anti-proliferative effects against all the tested HGSOC cell lines, achieving IC50 concentrations lower than 25 µM. Further investigations disclosed that these chalcones prompted an increase in the subG1 phase cell cycle and induced apoptosis in OVCAR-3 cells. In summary, our study underscores the potential of chalcones as promising agents for the treatment of ovarian cancer.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Chalcona/farmacologia , Chalcona/uso terapêutico , Chalconas/farmacologia , Chalconas/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
6.
Bioorg Chem ; 119: 105552, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929518

RESUMO

During the last decades the interest towards natural products containing the tetronic acid moiety augmented significantly, due to their challenging structures and to the wide range of biological activities they display. This increasing enthusiasm has led to noteworthy advances in the development of innovative methodologies for the construction of the butenolide nucleus. This review provides an overview of the progress in the synthesis of tetronic acid as a structural key motif of natural compounds, covering the last 15 years. Herein, the most representative synthetic pathways towards structurally diverse natural tetronic acids are grouped according to the strategy followed. The first part describes the functionalization of a preformed tetronic acid core by intermolecular reactions (cross-coupling reactions, nucleophilic substitution, multicomponent reactions) whereas the second part deals with intramolecular approaches (Dieckmann, cycloaddition or ring expansion reactions) to construct the heterocyclic core. This rational subcategorization allowed us to make some considerations about the best approaches for the synthesis of specific substrates, including modern intriguing methodologies such as microwave irradiation, solid phase anchoring, bio-transformations and continuous flow processes.


Assuntos
Produtos Biológicos/síntese química , Furanos/síntese química , Produtos Biológicos/química , Furanos/química , Estrutura Molecular , Estereoisomerismo
7.
J Enzyme Inhib Med Chem ; 37(1): 2382-2394, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36050846

RESUMO

Inhibition of c-Src is considered one of the most studied approaches to cancer treatment, with several heterocyclic compounds approved during the last 15 years as chemotherapeutic agents. Starting from the biological evaluation of an in-house collection of small molecules, indolinone was selected as the most promising scaffold. In this work, several functionalised indolinones were synthesised and their inhibitory potency and cytotoxic activity were assayed. The pharmacological profile of the most active compounds, supported by molecular modelling studies, revealed that the presence of an amino group increased the affinity towards the ATP-binding site of c-Src. At the same time, bulkier derivatizations seemed to improve the interactions within the enzymatic pocket. Overall, these data represent an early stage towards the optimisation of new, easy-to-be functionalised indolinones as potential c-Src inhibitors.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Antineoplásicos/química , Simulação de Acoplamento Molecular , Oxindóis , Proteínas Tirosina Quinases , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36555657

RESUMO

G-quadruplexes are nucleotide sequences present in the promoter region of numerous oncogenes, having a key role in the suppression of gene transcription. Recently, the binding of anthraquinones from Aloe vera to G-quadruplex structures has been studied through various physico-chemical techniques. Intrigued by the reported results, we investigated the affinity of aloe emodin, aloe emodin-8-glucoside, and aloin to selected G-quadruplex nucleotide sequences by NMR spectroscopy. The structural determinants for the formation of the ligand/nucleotide complexes were elucidated and a model of the interactions between the tested compounds and C-Kit and c-Myc G-quadruplex DNA structures was built by integrated NMR and molecular modeling studies. Overall, the obtained results confirmed and implemented the previously reported findings, pointing out the complementarity of the different approaches and their contribution to a more detailed overview of the ligand/nucleotide complex formation. Furthermore, the proposed models of interaction could pave the way to the design of new nature-derived compounds endowed with increased G-quadruplex stabilizing activity.


Assuntos
Aloe , Quadruplex G , Aloe/química , Ligantes , Antraquinonas , Proteínas Proto-Oncogênicas c-kit/genética , Nucleotídeos
9.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566141

RESUMO

G-quadruplexes are secondary structures originating from nucleic acid regions rich in guanines, which are well known for their involvement in gene transcription and regulation and DNA damage repair. In recent studies from our group, kynurenic acid (KYNA) derivative 1 was synthesized and found to share the structural features typical of G-quadruplex binders. Herein, structural modifications were conducted on this scaffold in order to assist the binding with a G-quadruplex, by introducing charged hydrophilic groups. The antiproliferative activity of the new analogues was evaluated on an IGROV-1 human ovarian cancer cell line, and the most active compound, compound 9, was analyzed with NMR spectrometry in order to investigate its binding mode with DNA. The results indicated that a weak, non-specific interaction was set with duplex nucleotides; on the other hand, titration in the presence of a G-quadruplex from human telomere d(TTAGGGT)4 showed a stable, although not strong, interaction at the 3'-end of the nucleotidic sequence, efficiently assisted by salt bridges between the quaternary nitrogen and the external phosphate groups. Overall, this work can be considered a platform for the development of a new class of potential G-quadruplex stabilizing molecules, confirming the crucial role of a planar system and the ability of charged nitrogen-containing groups to facilitate the binding to G-quadruplex grooves and loops.


Assuntos
Quadruplex G , Ácido Cinurênico , DNA/química , Humanos , Nitrogênio , Telômero
10.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897968

RESUMO

The enzyme PARP1 is an attractive target for cancer therapy, as it is involved in DNA repair processes. Several PARP1 inhibitors have been approved for clinical treatments. However, the rapid outbreak of resistance is seriously threatening the efficacy of these compounds, and alternative strategies are required to selectively regulate PARP1 activity. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter was recently identified. In this study, we explore the interaction of known G-quadruplex binders with the G-quadruplex structure found in the PARP gene promoter region. The results obtained by NMR, CD, and fluorescence titration, also confirmed by molecular modeling studies, demonstrate a variety of different binding modes with small stabilization of the G-quadruplex sequence located at the PARP1 promoter. Surprisingly, only pyridostatin produces a strong stabilization of the G-quadruplex-forming sequence. This evidence makes the identification of a proper (3+1) stabilizing ligand a challenging goal for further investigation.


Assuntos
Quadruplex G , Dicroísmo Circular , Reparo do DNA , Ligantes , Regiões Promotoras Genéticas
11.
Chemistry ; 27(34): 8832-8845, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33890349

RESUMO

Stilbenoids are natural compounds endowed with several biological activities, including cardioprotection and cancer prevention. Among them, (±)-trans-δ-viniferin, deriving from trans-resveratrol dimerization, was investigated in its ability to target DNA duplex and G-quadruplex structures by exploiting NMR spectroscopy, circular dichroism, fluorescence spectroscopy and molecular docking. (±)-trans-δ-Viniferin proved to bind both the minor and major grooves of duplexes, whereas it bound the 3'- and 5'-ends of a G-quadruplex by stacking on the outer quartets, accompanied by rearrangement of flanking residues. Specifically, (±)-trans-δ-viniferin demonstrated higher affinity for the investigated DNA targets than its monomeric counterpart. Additionally, the methoxylated derivatives of (±)-trans-δ-viniferin and trans-resveratrol, i. e. (±)-pterostilbene-trans-dihydrodimer and trans-pterostilbene, respectively, were evaluated, revealing similar binding modes, affinities and stoichiometries with the DNA targets as their parent analogues. All tested compounds were cytotoxic at µM concentration on several cancer cell lines, showing DNA damaging activity consistent with their ability to tightly interact with duplex and G-quadruplex structures.


Assuntos
Quadruplex G , Estilbenos , Dicroísmo Circular , DNA , Simulação de Acoplamento Molecular , Resveratrol
12.
Amino Acids ; 53(6): 869-880, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33945018

RESUMO

Prostate cancer (PCa) is the most common malignancy in men and represents the second leading cause of cancer deaths in Western countries. PCa is initially androgen-dependent, however, this tumor inevitably progresses as castration-resistant prostate cancer (CRPC), which represents the most aggressive phase of the pathology. In this work, in two CRPC cell lines (DU145 and PC3), we studied the in vitro inhibitory properties of the tryptophan-derived endogenous metabolite kynurenic acid (KYNA) and of the lactam form of 3-2'-pyrrilonidinyl-kynurenic acid (3-PKA-L), alkaloids usually present in combination in chestnut honey. Cytotoxicity was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell colony formation assay, and Western blot analysis of the major mediator proteins involved in apoptotic processes. In all experiments, KYNA was scarcely or not active while 3-PKA-L showed anticancer activity in the high concentration range (0.01 mM - 1 mM) from 24 to 72 h. The results obtained showed that cell death was induced by extrinsic apoptotic pathway, by cell morphological changes and reduction of cell colonies number. These novel results represent the first promising step to the accurate description of 3-PKA-L cytotoxic effect, not observed with KYNA, paving the way to the search of new anticancer agents, as well as to the better understanding of the physiopathological role of this interesting natural product.


Assuntos
Alcaloides , Antineoplásicos Fitogênicos , Apoptose/efeitos dos fármacos , Hippocastanaceae/química , Neoplasias da Próstata , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
13.
Drug Resist Updat ; 50: 100682, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32087558

RESUMO

Multidrug resistance (MDR) is the dominant cause of the failure of cancer chemotherapy. The design of antitumor drugs that are able to evade MDR is rapidly evolving, showing that this area of biomedical research attracts great interest in the scientific community. The current review explores promising recent approaches that have been developed with the aim of circumventing or overcoming MDR. Encouraging results have been obtained in the investigation of the MDR-modulating properties of various classes of natural compounds and their analogues. Inhibition of P-gp or downregulation of its expression have proven to be the main mechanisms by which MDR can be surmounted. The use of hybrid molecules that are able to simultaneously interact with two or more cancer cell targets is currently being explored as a means to circumvent drug resistance. This strategy is based on the design of hybrid compounds that are obtained either by merging the structural features of separate drugs, or by conjugating two drugs or pharmacophores via cleavable/non-cleavable linkers. The approach is highly promising due to the pharmacokinetic and pharmacodynamic advantages that can be achieved over the independent administration of the two individual components. However, it should be stressed that the task of obtaining successful multivalent drugs is a very challenging one. The conjugation of anticancer agents with nitric oxide (NO) donors has recently been developed, creating a particular class of hybrid that can combat tumor drug resistance. Appropriate NO donors have been shown to reverse drug resistance via nitration of ABC transporters and by interfering with a number of metabolic enzymes and signaling pathways. In fact, hybrid compounds that are produced by covalently attaching NO-donors and antitumor drugs have been shown to elicit a synergistic cytotoxic effect in a variety of drug resistant cancer cell lines. Another strategy to circumvent MDR is based on nanocarrier-mediated transport and the controlled release of chemotherapeutic drugs and P-gp inhibitors. Their pharmacokinetics are governed by the nanoparticle or polymer carrier and make use of the enhanced permeation and retention (EPR) effect, which can increase selective delivery to cancer cells. These systems are usually internalized by cancer cells via endocytosis and accumulate in endosomes and lysosomes, thus preventing rapid efflux. Other modalities to combat MDR are described in this review, including the pharmaco-modulation of acridine, which is a well-known scaffold in the development of bioactive compounds, the use of natural compounds as means to reverse MDR, and the conjugation of anticancer drugs with carriers that target specific tumor-cell components. Finally, the outstanding potential of in silico structure-based methods as a means to evaluate the ability of antitumor drugs to interact with drug transporters is also highlighted in this review. Structure-based design methods, which utilize 3D structural data of proteins and their complexes with ligands, are the most effective of the in silico methods available, as they provide a prediction regarding the interaction between transport proteins and their substrates and inhibitors. The recently resolved X-ray structure of human P-gp can help predict the interaction sites of designed compounds, providing insight into their binding mode and directing possible rational modifications to prevent them from becoming P-gp drug substrates. In summary, although major efforts were invested in the search for new tools to combat drug resistant tumors, they all require further implementation and methodological development. Further investigation and progress in the abovementioned strategies will provide significant advances in the rational combat against cancer MDR.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias/tratamento farmacológico , Tecnologia Farmacêutica/métodos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acridinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Glicoconjugados/química , Humanos , Nanopartículas , Óxido Nítrico/metabolismo , Preparações de Plantas/farmacologia , Preparações de Plantas/uso terapêutico , Polímeros/química
14.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204214

RESUMO

Curaxins and especially the second-generation derivative curaxin CBL0137 have important antitumor activities in multiple cancers such as glioblastoma, melanoma and others. Although most of the authors suggest that their mechanism of action comes from the activation of p53 and inactivation of NF-kB by targeting FACT, there is evidence supporting the involvement of DNA binding in their antitumor activity. In this work, the DNA binding properties of curaxin CBL0137 with model quadruplex DNA oligomers were studied by 1H NMR, CD, fluorescence and molecular modeling. We provided molecular details of the interaction of curaxin with two G-quadruplex structures, the single repeat of human telomere d(TTAGGGT)4 and the c-myc promoter Pu22 sequence. We also performed 1H and 31P NMR experiments were also performed in order to investigate the interaction with duplex DNA models. Our data support the hypothesis that the interaction of curaxin with G-quadruplex may provide a novel insight into the DNA-binding properties of CBL0137, and it will be helpful for the design of novel selective DNA-targeting curaxin analogues.


Assuntos
Carbazóis/química , DNA/química , Quadruplex G , Substâncias Macromoleculares/química , Carbazóis/farmacologia , DNA/metabolismo , Quadruplex G/efeitos dos fármacos , Humanos , Substâncias Macromoleculares/metabolismo , Espectroscopia de Ressonância Magnética , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Telômero/genética , Telômero/metabolismo
15.
Int J Mol Sci ; 22(16)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34445442

RESUMO

DNA repair inhibitors are one of the latest additions to cancer chemotherapy. In general, chemotherapy produces DNA damage but tumoral cells may become resistant if enzymes involved in DNA repair are overexpressed and are able to reverse DNA damage. One of the most successful drugs based on modulating DNA repair are the poly(ADP-ribose) polymerase 1 (PARP1) inhibitors. Several PARP1 inhibitors have been recently developed and approved for clinical treatments. We envisaged that PARP inhibition could be potentiated by simultaneously modulating the expression of PARP 1 and the enzyme activity, by a two-pronged strategy. A noncanonical G-quadruplex-forming sequence within the PARP1 promoter has been recently identified. In this study, we explored the potential binding of clinically approved PARP1 inhibitors to the G-quadruplex structure found at the gene promoter region. The results obtained by NMR, CD, and fluorescence titration confirmed by molecular modeling demonstrated that two out the four PARP1 inhibitors studied are capable of forming defined complexes with the PARP1 G-quadruplex. These results open the possibility of exploring the development of better G-quadruplex binders that, in turn, may also inhibit the enzyme.


Assuntos
Quadruplex G , Modelos Moleculares , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/química , Regiões Promotoras Genéticas , Benzimidazóis/química , Benzimidazóis/farmacologia , DNA/química , DNA/efeitos dos fármacos , Humanos , Indazóis/química , Indazóis/farmacologia , Espectroscopia de Ressonância Magnética , Ftalazinas/química , Ftalazinas/farmacologia , Piperazinas/química , Piperazinas/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
16.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918510

RESUMO

The increasing emergence of fungicide-resistant pathogens requires urgent solutions for crop disease management. Here, we describe a structural investigation of new fungicides obtained by combining strobilurin and succinate dehydrogenase inhibitor pharmacophores. We identified compounds endowed with very good activity against wild-type Pyricularia oryzae, combined in some cases with promising activity against strobilurin-resistant strains. The first three-dimensional model of P. oryzae cytochrome bc1 complex containing azoxystrobin as a ligand was developed. The model was validated with a set of commercially available strobilurins, and it well explains both the resistance mechanism to strobilurins mediated by the mutation G143A and the activity of metyltetraprole against strobilurin-resistant strains. The obtained results shed light on the key recognition determinants of strobilurin-like derivatives in the cytochrome bc1 active site and will guide the further rational design of new fungicides able to overcome resistance caused by G143A mutation in the rice blast pathogen.


Assuntos
Ascomicetos , Farmacorresistência Fúngica , Fungicidas Industriais/síntese química , Estrobilurinas/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Succinato Desidrogenase/antagonistas & inibidores
17.
Molecules ; 26(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34946674

RESUMO

The natural stilbenoid dehydro-δ-viniferin, containing a benzofuran core, has been recently identified as a promising antimicrobial agent. To define the structural elements relevant to its activity, we modified the styryl moiety, appended at C5 of the benzofuran ring. In this paper, we report the construction of stilbenoid-derived 2,3-diaryl-5-substituted benzofurans, which allowed us to prepare a focused collection of dehydro-δ-viniferin analogues. The antimicrobial activity of the synthesized compounds was evaluated against S. aureus ATCC29213. The simplified analogue 5,5'-(2-(4-hydroxyphenyl)benzofuran-3,5-diyl)bis(benzene-1,3-diol), obtained in three steps from 4-bromo-2-iodophenol (63% overall yield), emerged as a promising candidate for further investigation (MIC = 4 µg/mL).


Assuntos
Antibacterianos , Benzofuranos , Resorcinóis , Staphylococcus aureus/crescimento & desenvolvimento , Estilbenos , Antibacterianos/química , Antibacterianos/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Testes de Sensibilidade Microbiana , Resorcinóis/química , Resorcinóis/farmacologia , Estilbenos/química , Estilbenos/farmacologia
18.
Bioorg Chem ; 104: 104253, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32920362

RESUMO

Atypical retinoids (AR) or retinoid-related molecules (RRMs) represent a promising class of antitumor compounds. Among AR, E-3-(3'-adamantan-1-yl-4'-hydroxybiphenyl-4-yl)acrylic acid (adarotene), has been extensively investigated. In the present work we report the results of our efforts to develop new adarotene-related atypical retinoids endowed also with POLA1 inhibitory activity. The effects of the synthesized compounds on cell growth were determined on a panel of human and hematological cancer cell lines. The most promising compounds showed antitumor activity against several tumor histotypes and increased cytotoxic activity against an adarotene-resistant cell line, compared to the parent molecule. The antitumor activity of a selected compound was evaluated on HT-29 human colon carcinoma and human mesothelioma (MM487) xenografts. Particularly significant was the in vivo activity of the compound as a single agent compared to adarotene and cisplatin, against pleural mesothelioma MM487. No reduction of mice body weight was observed, thus suggesting a higher tolerability with respect to the parent compound adarotene.


Assuntos
Antineoplásicos/farmacologia , DNA Polimerase I/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Retinoides/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , DNA Polimerase I/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Retinoides/síntese química , Retinoides/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
19.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610556

RESUMO

Privileged structures have been widely used as an effective template for the research and discovery of high value chemicals. Coumarin is a simple scaffold widespread in Nature and it can be found in a considerable number of plants as well as in some fungi and bacteria. In the last years, these natural compounds have been gaining an increasing attention from the scientific community for their wide range of biological activities, mainly due to their ability to interact with diverse enzymes and receptors in living organisms. In addition, coumarin nucleus has proved to be easily synthetized and decorated, giving the possibility of designing new coumarin-based compounds and investigating their potential in the treatment of various diseases. The versatility of coumarin scaffold finds applications not only in medicinal chemistry but also in the agrochemical field as well as in the cosmetic and fragrances industry. This review is intended to be a critical overview on coumarins, comprehensive of natural sources, metabolites, biological evaluations and synthetic approaches.


Assuntos
Cumarínicos/química , Cumarínicos/metabolismo , Alicerces Teciduais/química , Química Farmacêutica , Humanos , Relação Estrutura-Atividade
20.
Int J Mol Sci ; 21(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245220

RESUMO

In a recent study, we investigated the antimicrobial activity of a collection of resveratrol-derived monomers and dimers against a series of foodborne pathogens. Out of the tested molecules, dehydro-δ-viniferin and dehydro-ε-viniferin emerged as the most promising derivatives. To define the structural elements essential to the antimicrobial activity against the foodborne pathogen L. monocytogenes Scott A as a model Gram-positive microorganism, the synthesis of a series of simplified benzofuran-containing derivatives was carried out. The systematic removal of the aromatic moieties of the parent molecules allowed a deeper insight into the most relevant structural features affecting the activity. While the overall structure of compound 1 could not be altered without a substantial loss of antimicrobial activity, the structural simplification of compound 2 (minimal inhibitory concentration (MIC) 16 µg/mL, minimal bactericidal concentration (MBC) >512 µg/mL) led to the analogue 7 with increased activity (MIC 8 µg/mL, MBC 64 µg/mL).


Assuntos
Antibacterianos/química , Benzofuranos/química , Listeria monocytogenes/efeitos dos fármacos , Resorcinóis/química , Estilbenos/química , Antibacterianos/farmacologia , Benzofuranos/síntese química , Benzofuranos/farmacologia , Linhagem Celular , Fibroblastos/efeitos dos fármacos , Microbiologia de Alimentos , Humanos , Testes de Sensibilidade Microbiana , Resorcinóis/farmacologia , Resveratrol/química , Resveratrol/farmacologia , Pele/efeitos dos fármacos , Estilbenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA