Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Am Chem Soc ; 137(7): 2695-703, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25625324

RESUMO

Designing tight-binding ligands is a primary objective of small-molecule drug discovery. Over the past few decades, free-energy calculations have benefited from improved force fields and sampling algorithms, as well as the advent of low-cost parallel computing. However, it has proven to be challenging to reliably achieve the level of accuracy that would be needed to guide lead optimization (∼5× in binding affinity) for a wide range of ligands and protein targets. Not surprisingly, widespread commercial application of free-energy simulations has been limited due to the lack of large-scale validation coupled with the technical challenges traditionally associated with running these types of calculations. Here, we report an approach that achieves an unprecedented level of accuracy across a broad range of target classes and ligands, with retrospective results encompassing 200 ligands and a wide variety of chemical perturbations, many of which involve significant changes in ligand chemical structures. In addition, we have applied the method in prospective drug discovery projects and found a significant improvement in the quality of the compounds synthesized that have been predicted to be potent. Compounds predicted to be potent by this approach have a substantial reduction in false positives relative to compounds synthesized on the basis of other computational or medicinal chemistry approaches. Furthermore, the results are consistent with those obtained from our retrospective studies, demonstrating the robustness and broad range of applicability of this approach, which can be used to drive decisions in lead optimization.


Assuntos
Biologia Computacional , Descoberta de Drogas , Proteínas/metabolismo , Desenho de Fármacos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas/química , Termodinâmica
2.
J Chem Theory Comput ; 17(7): 4291-4300, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34096718

RESUMO

We report on the development and validation of the OPLS4 force field. OPLS4 builds upon our previous work with OPLS3e to improve model accuracy on challenging regimes of drug-like chemical space that includes molecular ions and sulfur-containing moieties. A novel parametrization strategy for charged species, which can be extended to other systems, is introduced. OPLS4 leads to improved accuracy on benchmarks that assess small-molecule solvation and protein-ligand binding.

3.
J Chem Theory Comput ; 16(11): 6926-6937, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32910652

RESUMO

To address some of the inherent challenges in modeling metalloenzymes, we here report an extension to the functional form of the OPLS3e force field to include terms adopted from the ligand field molecular mechanics (LFMM) model, including the angular overlap and Morse potential terms. The integration of these terms with OPLS3e, herein referred to as OPLS3e+M, improves the description of metal-ligand interactions and provides accurate relative binding energies and geometric preferences of transition-metal complexes by training to gas-phase density functional theory (DFT) energies. For [Cu(H2O)4]2+, OPLS3e+M significantly improves H2O binding energies and the geometric preference of the tetra-aqua Cu2+ complex. In addition, we conduct free-energy perturbation calculations on two pharmaceutically relevant metalloenzyme targets, which include chemical modifications at varying proximity to the binding-site metals, including changes to the metal-binding moiety of the ligand itself. The extensions made to OPLS3e lead to accurate predicted relative binding free energies for these series (mean unsigned error of 1.29 kcal mol-1). Our results provide evidence that integration of the LFMM model with OPLS3e can be utilized to predict thermodynamic quantities for such systems near chemical accuracy. With these improvements, we anticipate that robust free-energy perturbation calculations can be employed to accelerate the drug development efforts for metalloenzyme targets.


Assuntos
Teoria da Densidade Funcional , Descoberta de Drogas , Metaloproteínas/química , Metaloproteínas/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Termodinâmica
4.
J Chem Theory Comput ; 15(3): 1863-1874, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30768902

RESUMO

Building upon the OPLS3 force field we report on an enhanced model, OPLS3e, that further extends its coverage of medicinally relevant chemical space by addressing limitations in chemotype transferability. OPLS3e accomplishes this by incorporating new parameter types that recognize moieties with greater chemical specificity and integrating an on-the-fly parametrization approach to the assignment of partial charges. As a consequence, OPLS3e leads to greater accuracy against performance benchmarks that assess small molecule conformational propensities, solvation, and protein-ligand binding.


Assuntos
Simulação de Acoplamento Molecular , Proteínas/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Termodinâmica , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas/química , Teoria Quântica
5.
Sci Rep ; 7(1): 17773, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259213

RESUMO

Energy densities of ~510 J/g (max: 698 J/g) have been achieved in azobenzene-based syndiotactic-rich poly(methacrylate) polymers. The processing solvent and polymer-solvent interactions are important to achieve morphologically optimal structures for high-energy density materials. This work shows that morphological changes of solid-state syndiotactic polymers, driven by different solvent processings play an important role in controlling the activation energy of Z-E isomerization as well as the shape of the DSC exotherm. Thus, this study shows the crucial role of processing solvents and thin film structure in achieving higher energy densities.

6.
J Chem Theory Comput ; 12(1): 281-96, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26584231

RESUMO

The parametrization and validation of the OPLS3 force field for small molecules and proteins are reported. Enhancements with respect to the previous version (OPLS2.1) include the addition of off-atom charge sites to represent halogen bonding and aryl nitrogen lone pairs as well as a complete refit of peptide dihedral parameters to better model the native structure of proteins. To adequately cover medicinal chemical space, OPLS3 employs over an order of magnitude more reference data and associated parameter types relative to other commonly used small molecule force fields (e.g., MMFF and OPLS_2005). As a consequence, OPLS3 achieves a high level of accuracy across performance benchmarks that assess small molecule conformational propensities and solvation. The newly fitted peptide dihedrals lead to significant improvements in the representation of secondary structure elements in simulated peptides and native structure stability over a number of proteins. Together, the improvements made to both the small molecule and protein force field lead to a high level of accuracy in predicting protein-ligand binding measured over a wide range of targets and ligands (less than 1 kcal/mol RMS error) representing a 30% improvement over earlier variants of the OPLS force field.


Assuntos
Algoritmos , Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Quinase 2 Dependente de Ciclina/química , Quinase 2 Dependente de Ciclina/metabolismo , Ligantes , Modelos Moleculares , Peptídeos/química , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/metabolismo , Teoria Quântica , Bibliotecas de Moléculas Pequenas/metabolismo , Termodinâmica
7.
J Chem Theory Comput ; 8(8): 2553-8, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26592101

RESUMO

Explicit solvent molecular dynamics free energy perturbation simulations were performed to predict absolute solvation free energies of 239 diverse small molecules. We use OPLS2.0, the next generation OPLS force field, and compare the results with popular small molecule force fields-OPLS_2005, GAFF, and CHARMm-MSI. OPLS2.0 produces the best correlation with experimental data (R(2) = 0.95, slope = 0.96) and the lowest average unsigned errors (0.7 kcal/mol). Important classes of compounds that performed suboptimally with OPLS_2005 show significant improvements.

8.
J Chem Theory Comput ; 6(5): 1509-19, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-26615687

RESUMO

The accurate prediction of protein-ligand binding free energies is a primary objective in computer-aided drug design. The solvation free energy of a small molecule provides a surrogate to the desolvation of the ligand in the thermodynamic process of protein-ligand binding. Here, we use explicit solvent molecular dynamics free energy perturbation to predict the absolute solvation free energies of a set of 239 small molecules, spanning diverse chemical functional groups commonly found in drugs and drug-like molecules. We also compare the performance of absolute solvation free energies obtained using the OPLS_2005 force field with two other commonly used small molecule force fields-general AMBER force field (GAFF) with AM1-BCC charges and CHARMm-MSI with CHelpG charges. Using the OPLS_2005 force field, we obtain high correlation with experimental solvation free energies (R(2) = 0.94) and low average unsigned errors for a majority of the functional groups compared to AM1-BCC/GAFF or CHelpG/CHARMm-MSI. However, OPLS_2005 has errors of over 1.3 kcal/mol for certain classes of polar compounds. We show that predictions on these compound classes can be improved by using a semiempirical charge assignment method with an implicit bond charge correction.

9.
Biophys J ; 93(2): 442-55, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17237195

RESUMO

Schizophyllan is a beta(1-->3)-D-glucan polysaccharide with beta(1-->6)-branched lateral glucose residues that presents a very stiff triple-helical structure under most experimental conditions. Despite the remarkable stability of this structure (which persists up to 120 degrees C in aqueous solution), schizophyllan undergoes a major change of state around 7 degrees C in water that has been hypothesized to result from an order-disorder transition in the lateral residues. This hypothesis is only supported by indirect experimental evidence and detailed knowledge (at the atomic level) concerning hydrogen-bonding networks, interactions with the solvent molecules, orientational freedom of the lateral residues, and orientational correlations among them is still lacking. In this study explicit-solvent molecular dynamics simulations of a schizophyllan fragment (complemented by simulations of its tetrasaccharide monomer) are performed at three different temperatures (273 K, 350 K, and 450 K) and with two different types of boundary conditions (finite nonperiodic or infinite periodic fragment) as an attempt to provide detailed structural and dynamical information about the triple-helical conformation in solution and the mechanism of the low-temperature transition. These simulations suggest that three important driving forces for the high stability of the triple helix are i), the limited conformational work involved in its formation; ii), the formation of a dense hydrogen-bonding network at its center; and iii), the formation of interchain hydrogen bonds between main-chain and lateral glucose residues. However, these simulations evidence a moderate and continuous variation of the simulated observables upon increasing the temperature, rather than a sharp transition between the two lowest temperatures (that could be associated with the state transition). Although water-mediated hydrogen-bonded association of neighboring lateral residues is observed, this interaction is not strong enough to promote the formation of an ordered state (correlated motions of the lateral residues), even at the lowest temperature considered.


Assuntos
Sizofirano/química , Fenômenos Biofísicos , Biofísica , Configuração de Carboidratos , Sequência de Carboidratos , Ligação de Hidrogênio , Modelos Moleculares , Schizophyllum/química , Solventes , Termodinâmica , Água
10.
J Chem Theory Comput ; 1(4): 694-715, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26641692

RESUMO

A polarizable force field, and associated continuum solvation model, have been developed for the explicit purpose of computing and studying the energetics and structural features of protein binding to the wide range of ligands with potential for medicinal applications. Parameters for the polarizable force field (PFF) are derived from gas-phase ab initio calculations and then utilized for applications in which the protein binding to ligands occurs in aqueous solvents, wherein the charge distributions of proteins and ligands can be dramatically altered. The continuum solvation model is based on a self-consistent reaction field description of solvation, incorporating an analytical gradient, that allows energy minimizations (and, potentially, molecular dynamics simulations) of protein/ligand systems in continuum solvent. This technology includes a nonpolar model describing the cost of cavity formation, and van der Waals interactions, between the continuum solvent and protein/ligand solutes. Tests of the structural accuracy and computational stability of the methodology, and timings for energy minimizations of proteins and protein/ligand systems in the condensed phase, are reported. In addition, the derivation of polarizability, electrostatic, exchange repulsion, and torsion parameters from ab initio data is described, along with the use of experimental solvation energies for determining parameters for the solvation model.

11.
J Comput Chem ; 26(16): 1752-80, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16211539

RESUMO

We provide an overview of the IMPACT molecular mechanics program with an emphasis on recent developments and a description of its current functionality. With respect to core molecular mechanics technologies we include a status report for the fixed charge and polarizable force fields that can be used with the program and illustrate how the force fields, when used together with new atom typing and parameter assignment modules, have greatly expanded the coverage of organic compounds and medicinally relevant ligands. As we discuss in this review, explicit solvent simulations have been used to guide our design of implicit solvent models based on the generalized Born framework and a novel nonpolar estimator that have recently been incorporated into the program. With IMPACT it is possible to use several different advanced conformational sampling algorithms based on combining features of molecular dynamics and Monte Carlo simulations. The program includes two specialized molecular mechanics modules: Glide, a high-throughput docking program, and QSite, a mixed quantum mechanics/molecular mechanics module. These modules employ the IMPACT infrastructure as a starting point for the construction of the protein model and assignment of molecular mechanics parameters, but have then been developed to meet specialized objectives with respect to sampling and the energy function.


Assuntos
Simulação por Computador , Modelos Químicos , Software , Desenho de Fármacos , Modelos Moleculares , Método de Monte Carlo , Estrutura Terciária de Proteína , Teoria Quântica , Solventes/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA