Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 68(15): 4389-4406, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28922773

RESUMO

Low night and high day temperatures during sensitive reproductive stages cause spikelet sterility in rice. Phenotyping of tolerance traits in the field is difficult because of temporal interactions with phenology and organ temperature differing from ambient. Physiological models can be used to separate these effects. A 203-accession indica rice diversity panel was phenotyped for sterility in ten environments in Senegal and Madagascar and climate data were recorded. Here we report on sterility responses while a companion study reported on phenology. The objectives were to improve the RIDEV model of rice thermal sterility, to estimate response traits by fitting model parameters, and to link the response traits to genomic regions through genome-wide association studies (GWAS). RIDEV captured 64% of variation of sterility when cold acclimation during vegetative stage was simulated, but only 38% when it was not. The RIDEV parameters gave more and stronger quantitative trait loci (QTLs) than index variables derived more directly from observation. The 15 QTLs identified at P<1 × 10-5 (33 at P<1 × 10-4) were related to sterility effects of heat, cold, cold acclimation, or unexplained causes (baseline sterility). Nine annotated genes were found on average within the 50% linkage disequilibrium (LD) region. Among them, one to five plausible candidate genes per QTL were identified based on known expression profiles (organ, stage, stress factors) and function. Meiosis-, development- and flowering-related genes were frequent, as well a stress signaling kinases and transcription factors. Putative epigenetic factors such as DNA methylases or histone-related genes were frequent in cold-acclimation QTLs, and positive-effect alleles were frequent in cold-tolerant highland rice from Madagascar. The results indicate that epigenetic control of acclimation may be important in indica rice genotypes adapted to cool environments.


Assuntos
Adaptação Biológica , Clima , Genes de Plantas , Estudo de Associação Genômica Ampla , Temperatura Alta/efeitos adversos , Oryza/genética , Mudança Climática , Flores/crescimento & desenvolvimento , Madagáscar , Modelos Biológicos , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Fenótipo , Senegal
2.
J Exp Bot ; 68(15): 4369-4388, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28922774

RESUMO

Phenology and time of flowering are crucial determinants of rice adaptation to climate variation. A previous study characterized flowering responses of 203 diverse indica rices (the ORYTAGE panel) to ten environments in Senegal (six sowing dates) and Madagascar (two years and two altitudes) under irrigation in the field. This study used the physiological phenology model RIDEV V2 to heuristically estimate component traits of flowering such as cardinal temperatures (base temperature (Tbase) and optimum temperature), basic vegetative phase, photoperiod sensitivity and cold acclimation, and to conduct a genome-wide association study for these traits using 16 232 anonymous single-nucleotide polymorphism (SNP) markers. The RIDEV model after genotypic parameter optimization explained 96% of variation in time to flowering for Senegal alone and 91% for Senegal and Madagascar combined. The latter was improved to 94% by including an acclimation parameter reducing Tbase when the crop experienced low temperatures during early vegetative development. Eighteen significant (P<1.0 × 10-5) quantitative trait loci (QTLs) were identified, namely ten for RIDEV parameters and eight for climatic index variables (difference in time to flowering between key environments). Co-localization of QTLs for different traits were rare. RIDEV parameters gave QTLs that were mostly more significant and distinct from QTLs for index variables. Candidate genes were investigated within the estimated 50% linkage disequilibrium regions of 39 kB. In addition to several known flowering network genes, they included genes related to thermal stress adaptation and epigenetic control mechanisms. The peak SNP for a QTL for the crop parameter Tbase (P=2.0 × 10-7) was located within HD3a, a florigen that was recently identified as implicated in flowering under cool conditions.


Assuntos
Adaptação Biológica , Clima , DNA de Plantas/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Oryza/genética , Polimorfismo Genético , Mudança Climática , Flores/crescimento & desenvolvimento , Madagáscar , Modelos Biológicos , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Fenótipo , Estações do Ano , Senegal
5.
Microorganisms ; 11(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37317167

RESUMO

This study aimed to determine the effect of sulfur (S) application on a root-associated microbial community resulting in a rhizosphere microbiome with better nutrient mobilizing capacity. Soybean plants were cultivated with or without S application, the organic acids secreted from the roots were compared. High-throughput sequencing of 16S rRNA was used to analyze the effect of S on microbial community structure of the soybean rhizosphere. Several plant growth-promoting bacteria (PGPB) isolated from the rhizosphere were identified that can be harnessed for crop productivity. The amount of malic acid secreted from the soybean roots was significantly induced by S application. According to the microbiota analysis, the relative abundance of Polaromonas, identified to have positive association with malic acid, and arylsulfatase-producing Pseudomonas, were increased in S-applied soil. Burkholderia sp. JSA5, obtained from S-applied soil, showed multiple nutrient-mobilizing traits among the isolates. In this study, S application affected the soybean rhizosphere bacterial community structure, suggesting the contribution of changing plant conditions such as in the increase in organic acid secretion. Not only the shift of the microbiota but also isolated strains from S-fertilized soil showed PGPB activity, as well as isolated bacteria that have the potential to be harnessed for crop productivity.

6.
Microbes Environ ; 37(2)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35598988

RESUMO

Phosphorus (P) is abundant in soil and is essential for plant growth and development; however, it is easily rendered insoluble in complexes of different types of phosphates, which may lead to P deficiency. Therefore, increases in the amount of P released from phosphate minerals using microbial inoculants is an important aspect of agriculture. The present study used inorganic phosphate solubilizing bacteria (iPSB) in paddy field soils to develop microbial inoculants. Soils planted with rice were collected from different regions of Japan. Soil P was sequentially fractionated using the Hedley method. iPSB were isolated using selective media supplemented with tricalcium phosphate (Ca-P), aluminum phosphate (Al-P), or iron phosphate (Fe-P). Representative isolates were selected based on the P solubilization index and soil sampling site. Identification was performed using 16S rRNA and rpoB gene sequencing. Effectiveness was screened based on rice cultivar Koshihikari growth supplemented with Ca-P, Al-P, or Fe-P as the sole P source. Despite the relatively homogenous soil pH of paddy field sources, three sets of iPSB were isolated, suggesting the influence of fertilizer management and soil types. Most isolates were categorized as ß-Proteobacteria (43%). To the best of our knowledge, this is the first study to describe the genera Pleomorphomonas, Rhodanobacter, and Trinickia as iPSB. Acidovorax sp. JC5, Pseudomonas sp. JC11, Burkholderia sp. JA6 and JA10, Sphingomonas sp. JA11, Mycolicibacterium sp. JF5, and Variovorax sp. JF6 promoted plant growth in rice supplemented with an insoluble P source. The iPSBs obtained may be developed as microbial inoculants for various soil types with different P fixation capacities.


Assuntos
Inoculantes Agrícolas , Burkholderia , Oryza , Inoculantes Agrícolas/genética , Burkholderia/genética , Japão , Fosfatos , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA