Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Pharmacol ; 178(5): 1149-1163, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33347604

RESUMO

BACKGROUND AND PURPOSE: Cannabidiol (CBD) has been shown to differentially regulate the mechanistic target of rapamycin complex 1 (mTORC1) in preclinical models of disease, where it reduces activity in models of epilepsies and cancer and increases it in models of multiple sclerosis (MS) and psychosis. Here, we investigate the effects of phytocannabinoids on mTORC1 and define a molecular mechanism. EXPERIMENTAL APPROACH: A novel mechanism for phytocannabinoids was identified using the tractable model system, Dictyostelium discoideum. Using mouse embryonic fibroblasts, we further validate this new mechanism of action. We demonstrate clinical relevance using cells derived from healthy individuals and from people with MS (pwMS). KEY RESULTS: Both CBD and the more abundant cannabigerol (CBG) enhance mTORC1 activity in D. discoideum. We identify a mechanism for this effect involving inositol polyphosphate multikinase (IPMK), where elevated IPMK expression reverses the response to phytocannabinoids, decreasing mTORC1 activity upon treatment, providing new insight on phytocannabinoids' actions. We further validated this mechanism using mouse embryonic fibroblasts. Clinical relevance of this effect was shown in primary human peripheral blood mononuclear cells, where CBD and CBG treatment increased mTORC1 activity in cells derived from healthy individuals and decreased mTORC1 activity in cells derived from pwMS. CONCLUSION AND IMPLICATIONS: Our findings suggest that both CBD and the abundant CBG differentially regulate mTORC1 signalling through a mechanism dependent on the activity of the upstream IPMK signalling pathway, with potential relevance to the treatment of mTOR-related disorders, including MS.


Assuntos
Canabinoides/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Células Cultivadas , Fibroblastos , Leucócitos Mononucleares , Camundongos
2.
Biochem Biophys Rep ; 22: 100751, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32258439

RESUMO

Visualizing mitochondria in living Dictyostelium discoideum cells using fluorescent dyes is often problematic due to variability in staining, metabolism of the dyes, and unknown potential effects of the dyes on mitochondrial function. We show that fluorescent labelling of mitochondria, using an N-terminal mitochondrial localization sequence derived from the D. discoideum protein GcvH1 (glycine cleavage system H1) attached to a red fluorescent protein enables clear mitochondrial imaging. We also show that this labelling has no effect upon mitochondria load or respiratory function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA