Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chaos ; 33(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37703474

RESUMO

The surprising phenomenon of chimera in an ensemble of identical oscillators is no more strange behavior of network dynamics and reality. By this time, this symmetry breaking self-organized collective dynamics has been established in many networks, a ring of non-locally coupled oscillators, globally coupled networks, a three-dimensional network, and multi-layer networks. A variety of coupling and dynamical models in addition to the phase oscillators has been used for a successful observation of chimera patterns. Experimental verification has also been done using metronomes, pendula, chemical, and opto-electronic systems. The phenomenon has also been shown to appear in small networks, and hence, it is not size-dependent. We present here a brief review of the origin of chimera patterns restricting our discussions to networks of globally coupled identical oscillators only. The history of chimeras in globally coupled oscillators is older than what has been reported in nonlocally coupled phase oscillators much later. We elaborate the story of the origin of chimeras in globally coupled oscillators in a chronological order, within our limitations, and with brief descriptions of the significant contributions, including our personal experiences. We first introduce chimeras in non-locally coupled and other network configurations, in general, and then discuss about globally coupled networks in more detail.

2.
Chaos ; 33(2): 023128, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36859208

RESUMO

A discontinuous transition to hyperchaos is observed at discrete critical parameters in the Zeeman laser model for three well known nonlinear sources of instabilities, namely, quasiperiodic breakdown to chaos followed by interior crisis, quasiperiodic intermittency, and Pomeau-Manneville intermittency. Hyperchaos appears with a sudden expansion of the attractor of the system at a critical parameter for each case and it coincides with triggering of occasional and recurrent large-intensity pulses. The transition to hyperchaos from a periodic orbit via Pomeau-Manneville intermittency shows hysteresis at the critical point, while no hysteresis is recorded during the other two processes. The recurrent large-intensity pulses show characteristic features of extremes with their height larger than a threshold and the probability of a rare occurrence. The phenomenon is robust to weak noise although the critical parameter of transition to hyperchaos shifts with noise strength. This phenomenon appears as common in many low dimensional systems as reported earlier by Chowdhury et al. [Phys. Rep. 966, 1-52 (2022)], there the emergent large-intensity events or extreme events dynamics have been recognized simply as chaotic in nature although the temporal dynamics shows occasional large deviations from the original chaotic state in many examples. We need a new metric, in the future, that would be able to classify such significantly different dynamics and distinguish from chaos.

3.
Chaos ; 33(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37097935

RESUMO

The transient dynamics capture the time history in the behavior of a system before reaching an attractor. This paper deals with the statistics of transient dynamics in a classic tri-trophic food chain with bistability. The species of the food chain model either coexist or undergo a partial extinction with predator death after a transient time depending upon the initial population density. The distribution of transient time to predator extinction shows interesting patterns of inhomogeneity and anisotropy in the basin of the predator-free state. More precisely, the distribution shows a multimodal character when the initial points are located near a basin boundary and a unimodal character when chosen from a location far away from the boundary. The distribution is also anisotropic because the number of modes depends on the direction of the local of initial points. We define two new metrics, viz., homogeneity index and local isotropic index, to characterize the distinctive features of the distribution. We explain the origin of such multimodal distributions and try to present their ecological implications.


Assuntos
Cadeia Alimentar , Modelos Biológicos , Animais , Dinâmica Populacional , Comportamento Predatório , Ecossistema
4.
Chaos ; 32(8): 081106, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36049939

RESUMO

Hyperchaos is distinguished from chaos by the presence of at least two positive Lyapunov exponents instead of just one in dynamical systems. A general scenario is presented here that shows emergence of hyperchaos with a sudden large expansion of the attractor of continuous dynamical systems at a critical parameter when the temporal dynamics shows intermittent large-amplitude spiking or bursting events. The distribution of local maxima of the temporal dynamics is non-Gaussian with a tail, confirming a rare occurrence of the large-amplitude events. We exemplify our results on the sudden emergence of hyperchaos in three paradigmatic models, namely, a coupled Hindmarsh-Rose model, three coupled Duffing oscillators, and a hyperchaotic model.


Assuntos
Dinâmica não Linear
5.
Chaos ; 32(12): 121103, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36587354

RESUMO

The role of topological heterogeneity in the origin of extreme events in a network is investigated here. The dynamics of the oscillators associated with the nodes are assumed to be identical and influenced by mean-field repulsive interactions. An interplay of topological heterogeneity and the repulsive interaction between the dynamical units of the network triggers extreme events in the nodes when each node succumbs to such events for discretely different ranges of repulsive coupling. A high degree node is vulnerable to weaker repulsive interactions, while a low degree node is susceptible to stronger interactions. As a result, the formation of extreme events changes position with increasing strength of repulsive interaction from high to low degree nodes. Extreme events at any node are identified with the appearance of occasional large-amplitude events (amplitude of the temporal dynamics) that are larger than a threshold height and rare in occurrence, which we confirm by estimating the probability distribution of all events. Extreme events appear at any oscillator near the boundary of transition from rotation to libration at a critical value of the repulsive coupling strength. To explore the phenomenon, a paradigmatic second-order phase model is used to represent the dynamics of the oscillator associated with each node. We make an annealed network approximation to reduce our original model and, thereby, confirm the dual role of the repulsive interaction and the degree of a node in the origin of extreme events in any oscillator associated with a node.

6.
Chaos ; 31(1): 011103, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33754784

RESUMO

How long does a trajectory take to reach a stable equilibrium point in the basin of attraction of a dynamical system? This is a question of quite general interest and has stimulated a lot of activities in dynamical and stochastic systems where the metric of this estimation is often known as the transient or first passage time. In nonlinear systems, one often experiences long transients due to their underlying dynamics. We apply resetting or restart, an emerging concept in statistical physics and stochastic process, to mitigate the detrimental effects of prolonged transients in deterministic dynamical systems. We show that resetting the intrinsic dynamics intermittently to a spatial control line that passes through the equilibrium point can dramatically expedite its completion, resulting in a huge reduction in mean transient time and fluctuations around it. Moreover, our study reveals the emergence of an optimal restart time that globally minimizes the mean transient time. We corroborate the results with detailed numerical studies on two canonical setups in deterministic dynamical systems, namely, the Stuart-Landau oscillator and the Lorenz system. The key features-expedition of transient time-are found to be very generic under different resetting strategies. Our analysis opens up a door to control the mean and fluctuations in transient time by unifying the original dynamics with an external stochastic or periodic timer and poses open questions on the optimal way to harness transients in dynamical systems.

7.
Chaos ; 31(7): 073124, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34340359

RESUMO

The most important issue of concern in a food chain is the stability of species and their nature of persistence against system parameter changes. For understanding the stable dynamics and their response against parameter perturbation, the local stability analysis is an insufficient tool. A global stability analysis by the conventional techniques seems to supplement some of the shortcomings, however, it becomes more challenging for multistable ecosystems. Either of the techniques fails to provide a complete description of the complexity in dynamics that may evolve in the system, especially, when there is any transition between the stable states. A tri-trophic resource-consumer-predator food chain model has been revisited here that shows bistability and transition to monostability via a border collision that leads to a state of predator extinction. Although earlier studies have partially revealed the dynamics of such transitions, we would like to present additional and precise information by analyzing the system from the perspective of basin stability. By drawing different bifurcation diagrams against three important parameters, using different initial conditions, we identify the range of parameter values within which the stability of the states persists and changes to various complex dynamics. We emphasize the changes in the geometry of the basins of attraction and get a quantitative estimate of the nature of relative changes in the area of the basins (basin stability) during the transitions. Furthermore, we demonstrate the presence of a down-up control, in addition to the conventional bottom-up and top-down control phenomena in the food chain. The application of basin stability in food networks will go a long way for accurate analysis of their dynamics.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório
8.
Chaos ; 30(6): 063114, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32611111

RESUMO

Intermittent large amplitude events are seen in the temporal evolution of a state variable of many dynamical systems. Such intermittent large events suddenly start appearing in dynamical systems at a critical value of a system parameter and continues for a range of parameter values. Three important processes of instabilities, namely, interior crisis, Pomeau-Manneville intermittency, and the breakdown of quasiperiodic motion, are most common as observed in many systems that lead to such occasional and rare transitions to large amplitude spiking events. We characterize these occasional large events as extreme events if they are larger than a statistically defined significant height. We present two exemplary systems, a single system and a coupled system, to illustrate how the instabilities work to originate extreme events and they manifest as non-trivial dynamical events. We illustrate the dynamical and statistical properties of such events.

9.
Chaos ; 29(4): 043131, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31042945

RESUMO

We notice signatures of extreme eventslike behavior in a laser based Ikeda map. The trajectory of the system occasionally travels a large distance away from the bounded chaotic region, which appears as intermittent spiking events in the temporal dynamics. The large spiking events satisfy the conditions of extreme events as usually observed in dynamical systems. The probability density function of the large spiking events shows a long-tail distribution consistent with the characteristics of rare events. The interevent intervals obey a Poissonlike distribution. We locate the parameter regions of extreme events in phase diagrams. Furthermore, we study two Ikeda maps to explore how and when extreme events terminate via mutual interaction. A pure diffusion of information exchange is unable to terminate extreme events where synchronous occurrence of extreme events is only possible even for large interaction. On the other hand, a threshold-activated coupling can terminate extreme events above a critical value of mutual interaction.

10.
Chaos ; 28(8): 081101, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30180614

RESUMO

Counterintuitive to the common notion of symmetry breaking, asymmetry favors synchrony in a network of oscillators. Our observations on an ensemble of identical Stuart-Landau systems under a symmetry breaking coupling support our conjecture. As usual, for a complete deterministic and the symmetric choice of initial clusters, a variety of asymptotic states, namely, multicluster oscillation death (1-OD, 3-OD, and m -OD), chimera states, and traveling waves emerge. Alternatively, multiple chimera death (1-CD, 3-CD, and m -CD) and completely synchronous states emerge in the network whenever some randomness is added to the symmetric initial states. However, in both the cases, an increasing asymmetry in the initial cluster size restores symmetry in the network, leading to the most favorable complete synchronization state for a broad range of coupling parameters. We are able to reduce the network model using the mean-field approximation that reproduces the dynamical features of the original network.

11.
Chaos ; 27(7): 073108, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28764407

RESUMO

We report the emergence of coexisting synchronous and asynchronous subpopulations of oscillators in one dimensional arrays of identical oscillators by applying a self-feedback control. When a self-feedback is applied to a subpopulation of the array, similar to chimera states, it splits into two/more sub-subpopulations coexisting in coherent and incoherent states for a range of self-feedback strength. By tuning the coupling between the nearest neighbors and the amount of self-feedback in the perturbed subpopulation, the size of the coherent and the incoherent sub-subpopulations in the array can be controlled, although the exact size of them is unpredictable. We present numerical evidence using the Landau-Stuart system and the Kuramoto-Sakaguchi phase model.

12.
Chaos ; 27(2): 023110, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28249391

RESUMO

We observe the multiclustered oscillation death and chimeralike states in an array of Josephson junctions under a combination of self-repulsive and cross-attractive mean-field interaction when each isolated junction is in a bistable state, a coexisting fixed point and an oscillatory state. We locate the parameter landscape of the multiclustered oscillation death and chimeralike states. Alternatively, a purely repulsive mean-field interaction in an array of all oscillatory junctions produces chimeralike states with signatures of metastability in the incoherent subpopulation of junctions.

13.
Chaos ; 26(8): 083104, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27586600

RESUMO

A large parameter mismatch can induce amplitude death in two instantaneously coupled oscillators. Alternatively, a time delay in the coupling can induce amplitude death in two identical oscillators. We unify the mechanism of quenching of oscillation in coupled oscillators, either by a large parameter mismatch or a delay coupling, by a common lag scenario that is, surprisingly, different from the conventional lag synchronization. We present numerical as well as experimental evidence of this unknown kind of lag scenario when the lag increases with coupling and at a critically large value at a critical coupling strength, amplitude death emerges in two largely mismatched oscillators. This is analogous to amplitude death in identical systems with increasingly large coupling delay. In support, we use examples of the Chua oscillator and the Bonhoeffer-van der Pol system. Furthermore, we confirm this lag scenario during the onset of amplitude death in identical Stuart-Landau system under various instantaneous coupling forms, repulsive, conjugate, and a type of nonlinear coupling.

14.
Chaos ; 26(4): 043112, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27131491

RESUMO

We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of the stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.


Assuntos
Dinâmica não Linear , Eletrônica
15.
Chaos ; 25(12): 123104, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26723143

RESUMO

We report an interesting bow-tie shaped bursting behaviour in a certain parameter regime of two resistive-capacitative shunted Josephson junctions, one in the oscillatory and the other in the excitable mode and coupled together resistively. The burst emerges in both the junctions and they show near-complete synchronization for strong enough couplings. We discuss a possible bifurcation scenario to explain the origin of the burst. An exhaustive study on the parameter space of the system is performed, demarcating the regions of bursting from other solutions.


Assuntos
Modelos Teóricos , Impedância Elétrica , Fatores de Tempo
16.
Chaos ; 25(5): 053112, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26026324

RESUMO

The coexistence of infinitely many attractors is called extreme multistability in dynamical systems. In coupled systems, this phenomenon is closely related to partial synchrony and characterized by the emergence of a conserved quantity. We propose a general design of coupling that leads to partial synchronization, which may be a partial complete synchronization or partial antisynchronization and even a mixed state of complete synchronization and antisynchronization in two coupled systems and, thereby reveal the emergence of extreme multistability. The proposed design of coupling has wider options and allows amplification or attenuation of the amplitude of the attractors whenever it is necessary. We demonstrate that this phenomenon is robust to parameter mismatch of the coupled oscillators.

17.
Chaos ; 24(4): 043103, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25554023

RESUMO

We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.

18.
Chaos ; 23(4): 043115, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24387554

RESUMO

Lag synchronization is a basic phenomenon in mismatched coupled systems, delay coupled systems, and time-delayed systems. It is characterized by a lag configuration that identifies a unique time shift between all pairs of similar state variables of the coupled systems. In this report, an attempt is made how to induce multiple lag configurations in coupled systems when different pairs of state variables attain different time shift. A design of coupling is presented to realize this multiple lag synchronization. Numerical illustration is given using examples of the Rössler system and the slow-fast Hindmarsh-Rose neuron model. The multiple lag scenario is physically realized in an electronic circuit of two Sprott systems.


Assuntos
Relógios Biológicos , Modelos Neurológicos , Neurônios
19.
Phys Rev E ; 108(2-1): 024215, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723775

RESUMO

How do higher-order interactions influence the dynamical landscape of a network of the second-order phase oscillators? We address this question using three coupled Kuramoto phase oscillators with inertia under pairwise and higher-order interactions, in search of various collective states, and new states, if any, that show marginal presence or absence under pairwise interactions. We explore this small network for varying phase lag in the coupling and over a range of negative to positive coupling strength of pairwise as well as higher-order or group interactions. In the extended coupling parameter plane of the network we record several well-known states such as synchronization, frequency chimera states, and rotating waves that appear with distinct boundaries. In the parameter space, we also find states generated by the influence of higher-order interactions: The 2+1 antipodal point and the 2+1 phase-locked states. Our results demonstrate the importantance of the choices of the phase lag and the sign of the higher-order coupling strength for the emergent dynamics of the network. We provide analytical support to our numerical results.

20.
Sci Rep ; 13(1): 20740, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007582

RESUMO

A balanced ecosystem with coexisting constituent species is often perturbed by different natural events that persist only for a finite duration of time. What becomes important is whether, in the aftermath, the ecosystem recovers its balance or not. Here we study the fate of an ecosystem by monitoring the dynamics of a particular species that encounters a sudden increase in death rate. For exploration of the fate of the species, we use Monte-Carlo simulation on a three-species cyclic rock-paper-scissor model. The density of the affected (by perturbation) species is found to drop exponentially immediately after the pulse is applied. In spite of showing this exponential decay as a short-time behavior, there exists a region in parameter space where this species surprisingly remains as a single survivor, wiping out the other two which had not been directly affected by the perturbation. Numerical simulations using stochastic differential equations of the species give consistency to our results.


Assuntos
Modelos Biológicos , Simulação por Computador , Método de Monte Carlo , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA