Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Brain ; 146(12): 5124-5138, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37450566

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. ALS is on a pathogenetic disease spectrum with frontotemporal dementia, referred to as ALS-frontotemporal spectrum disorder (ALS-FTSD). For mutations associated with ALS-FTSD, such as the C9orf72 hexanucleotide repeat expansion, the molecular factors associated with heterogeneity along this spectrum require further characterization. Here, using a targeted NanoString molecular barcoding approach, we interrogate neuroinflammatory dysregulation and heterogeneity at the level of gene expression in post-mortem motor cortex tissue from a cohort of clinically heterogeneous C9-ALS-FTSD cases. We identified 20 dysregulated genes in C9-ALS-FTSD, with enrichment of microglial and inflammatory response gene sets. Two genes with significant correlations to available clinical metrics were selected for validation: FKBP5, a correlate of cognitive function, and brain-derived neurotrophic factor (BDNF), a correlate of disease duration. FKBP5 and its signalling partner, NF-κB, appeared to have a cell type-specific staining distribution, with activated (i.e. nuclear) NF-κB immunoreactivity in C9-ALS-FTSD. Expression of BDNF, a correlate of disease duration, was confirmed to be higher in individuals with long compared to short disease duration using BaseScope™ in situ hybridization. Our analyses also revealed two distinct neuroinflammatory panel signatures (NPS), NPS1 and NPS2, delineated by the direction of expression of proinflammatory, axonal transport and synaptic signalling pathways. We compared NPS between C9-ALS-FTSD cases and those from sporadic ALS and SOD1-ALS cohorts and identified NPS1 and NPS2 across all cohorts. Moreover, a subset of NPS was also able to separate publicly available RNA sequencing data from independent C9-ALS and sporadic ALS cohorts into two inflammatory subgroups. Importantly, NPS subgroups did not clearly segregate with available demographic, genetic, clinical or pathological features, highlighting the value of molecular stratification in clinical trials for inflammatory subgroup identification. Our findings thus underscore the importance of tailoring therapeutic approaches based on distinct molecular signatures that exist between and within ALS-FTSD cohorts.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , NF-kappa B , Doenças Neurodegenerativas/genética , Demência Frontotemporal/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA
2.
J Neurol Neurosurg Psychiatry ; 93(2): 126-132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34362854

RESUMO

BACKGROUND: Inflammatory responses to intracerebral haemorrhage (ICH) are potential therapeutic targets. We aimed to quantify molecular markers of inflammation in human brain tissue after ICH compared with controls using meta-analysis. METHODS: We searched OVID MEDLINE (1946-) and Embase (1974-) in June 2020 for studies that reported any measure of a molecular marker of inflammation in brain tissue from five or more adults after ICH. We assessed risk of bias using a modified Newcastle-Ottawa Scale (mNOS; mNOS score 0-9; 9 indicates low bias), extracted aggregate data, and used random effects meta-analysis to pool associations of molecules where more than two independent case-control studies reported the same outcome and Gene Ontology enrichment analysis to identify over-represented biological processes in pooled sets of differentially expressed molecules (International Prospective Register of Systematic Reviews ID: CRD42018110204). RESULTS: Of 7501 studies identified, 44 were included: 6 were case series and 38 were case-control studies (median mNOS score 4, IQR 3-5). We extracted data from 21 491 analyses of 20 951 molecules reported by 38 case-control studies. Only one molecule (interleukin-1ß protein) was quantified in three case-control studies (127 ICH cases vs 41 ICH-free controls), which found increased abundance of interleukin-1ß protein after ICH (corrected standardised mean difference 1.74, 95% CI 0.28 to 3.21, p=0.036, I2=46%). Processes associated with interleukin-1ß signalling were enriched in sets of molecules that were more abundant after ICH. CONCLUSION: Interleukin-1ß abundance is increased after ICH, but analyses of other inflammatory molecules after ICH lack replication. Interleukin-1ß pathway modulators may optimise inflammatory responses to ICH and merit testing in clinical trials.


Assuntos
Hemorragia Cerebral/patologia , Inflamação/patologia , Adulto , Biomarcadores , Encéfalo , Estudos de Casos e Controles , Humanos
3.
Brain Commun ; 6(2): fcae074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482372

RESUMO

A key step in understanding the results of biological experiments is visualization of the data. Many laboratory experiments contain a range of measurements that exist within a hierarchy of interdependence. An automated and facile way to visualize and interrogate such multilevel data, across many experimental variables, would (i) lead to improved understanding of the results, (ii) help to avoid misleading interpretation of statistics and (iii) easily identify outliers and sources of batch and confounding effects. While many excellent graphing solutions already exist, they are often geared towards the production of publication-ready plots and the analysis of a single variable at a time, require programming expertise or are unnecessarily complex for the task at hand. Here, we present Laboratory Automated Interrogation of Data (LAB-AID), an interactive tool specifically designed to automatically visualize and query hierarchical data resulting from biological experiments.

4.
Elife ; 122023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085657

RESUMO

Microglial endolysosomal (dys)function is strongly implicated in neurodegenerative disease. Transcriptomic studies show that a microglial state characterised by a set of genes involved in endolysosomal function is induced in both mouse Alzheimer's disease (AD) models and human AD brain, and that the emergence of this state is emphasised in females. Cst7 (encoding cystatin F) is among the most highly upregulated genes in these microglia. However, despite such striking and robust upregulation, the function of Cst7 in neurodegenerative disease is not understood. Here, we crossed Cst7-/- mice with the AppNL-G-F mouse to test the role of Cst7 in a model of amyloid-driven AD. Surprisingly, we found that Cst7 plays a sexually dimorphic role regulating microglia in this model. In females, Cst7-/-AppNL-G-F microglia had greater endolysosomal gene expression, lysosomal burden, and amyloid beta (Aß) burden in vivo and were more phagocytic in vitro. However, in males, Cst7-/-AppNL-G-F microglia were less inflammatory and had a reduction in lysosomal burden but had no change in Aß burden. Overall, our study reveals functional roles for one of the most commonly upregulated genes in microglia across disease models, and the sex-specific profiles of Cst7-/--altered microglial disease phenotypes. More broadly, the findings raise important implications for AD including crucial questions on sexual dimorphism in neurodegenerative disease and the interplay between endolysosomal and inflammatory pathways in AD pathology.


Assuntos
Doença de Alzheimer , Cistatinas , Doenças Neurodegenerativas , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Cistatinas/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Microglia/metabolismo , Doenças Neurodegenerativas/patologia
5.
Mol Autism ; 13(1): 49, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36536454

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is a common single gene cause of intellectual disability and autism spectrum disorder. Cognitive inflexibility is one of the hallmarks of FXS with affected individuals showing extreme difficulty adapting to novel or complex situations. To explore the neural correlates of this cognitive inflexibility, we used a rat model of FXS (Fmr1-/y). METHODS: We recorded from the CA1 in Fmr1-/y and WT littermates over six 10-min exploration sessions in a novel environment-three sessions per day (ITI 10 min). Our recordings yielded 288 and 246 putative pyramidal cells from 7 WT and 7 Fmr1-/y rats, respectively. RESULTS: On the first day of exploration of a novel environment, the firing rate and spatial tuning of CA1 pyramidal neurons was similar between wild-type (WT) and Fmr1-/y rats. However, while CA1 pyramidal neurons from WT rats showed experience-dependent changes in firing and spatial tuning between the first and second day of exposure to the environment, these changes were decreased or absent in CA1 neurons of Fmr1-/y rats. These findings were consistent with increased excitability of Fmr1-/y CA1 neurons in ex vivo hippocampal slices, which correlated with reduced synaptic inputs from the medial entorhinal cortex. Lastly, activity patterns of CA1 pyramidal neurons were dis-coordinated with respect to hippocampal oscillatory activity in Fmr1-/y rats. LIMITATIONS: It is still unclear how the observed circuit function abnormalities give rise to behavioural deficits in Fmr1-/y rats. Future experiments will focus on this connection as well as the contribution of other neuronal cell types in the hippocampal circuit pathophysiology associated with the loss of FMRP. It would also be interesting to see if hippocampal circuit deficits converge with those seen in other rodent models of intellectual disability. CONCLUSIONS: In conclusion, we found that hippocampal place cells from Fmr1-/y rats show similar spatial firing properties as those from WT rats but do not show the same experience-dependent increase in spatial specificity or the experience-dependent changes in network coordination. Our findings offer support to a network-level origin of cognitive deficits in FXS.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Ratos , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Hipocampo/metabolismo
6.
Mol Autism ; 13(1): 34, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850732

RESUMO

BACKGROUND: Mutations in the postsynaptic transmembrane protein neuroligin-3 are highly correlative with autism spectrum disorders (ASDs) and intellectual disabilities (IDs). Fear learning is well studied in models of these disorders, however differences in fear response behaviours are often overlooked. We aim to examine fear behaviour and its cellular underpinnings in a rat model of ASD/ID lacking Nlgn3. METHODS: This study uses a range of behavioural tests to understand differences in fear response behaviour in Nlgn3-/y rats. Following this, we examined the physiological underpinnings of this in neurons of the periaqueductal grey (PAG), a midbrain area involved in flight-or-freeze responses. We used whole-cell patch-clamp recordings from ex vivo PAG slices, in addition to in vivo local-field potential recordings and electrical stimulation of the PAG in wildtype and Nlgn3-/y rats. We analysed behavioural data with two- and three-way ANOVAS and electrophysiological data with generalised linear mixed modelling (GLMM). RESULTS: We observed that, unlike the wildtype, Nlgn3-/y rats are more likely to response with flight rather than freezing in threatening situations. Electrophysiological findings were in agreement with these behavioural outcomes. We found in ex vivo slices from Nlgn3-/y rats that neurons in dorsal PAG (dPAG) showed intrinsic hyperexcitability compared to wildtype. Similarly, stimulating dPAG in vivo revealed that lower magnitudes sufficed to evoke flight behaviour in Nlgn3-/y than wildtype rats, indicating the functional impact of the increased cellular excitability. LIMITATIONS: Our findings do not examine what specific cell type in the PAG is likely responsible for these phenotypes. Furthermore, we have focussed on phenotypes in young adult animals, whilst the human condition associated with NLGN3 mutations appears during the first few years of life. CONCLUSIONS: We describe altered fear responses in Nlgn3-/y rats and provide evidence that this is the result of a circuit bias that predisposes flight over freeze responses. Additionally, we demonstrate the first link between PAG dysfunction and ASD/ID. This study provides new insight into potential pathophysiologies leading to anxiety disorders and changes to fear responses in individuals with ASD.


Assuntos
Transtorno Autístico , Animais , Transtorno Autístico/metabolismo , Medo/fisiologia , Congelamento , Humanos , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/metabolismo , Ratos
7.
Cell Rep ; 32(6): 107988, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32783927

RESUMO

Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1-/y mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1-/y neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1-/y mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Células Piramidais/metabolismo , Animais , Modelos Animais de Doenças , Homeostase , Camundongos
8.
Nat Commun ; 10(1): 4813, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645626

RESUMO

Cellular and circuit hyperexcitability are core features of fragile X syndrome and related autism spectrum disorder models. However, the cellular and synaptic bases of this hyperexcitability have proved elusive. We report in a mouse model of fragile X syndrome, glutamate uncaging onto individual dendritic spines yields stronger single-spine excitation than wild-type, with more silent spines. Furthermore, fewer spines are required to trigger an action potential with near-simultaneous uncaging at multiple spines. This is, in part, from increased dendritic gain due to increased intrinsic excitability, resulting from reduced hyperpolarization-activated currents, and increased NMDA receptor signaling. Using super-resolution microscopy we detect no change in dendritic spine morphology, indicating no structure-function relationship at this age. However, ultrastructural analysis shows a 3-fold increase in multiply-innervated spines, accounting for the increased single-spine glutamate currents. Thus, loss of FMRP causes abnormal synaptogenesis, leading to large numbers of poly-synaptic spines despite normal spine morphology, thus explaining the synaptic perturbations underlying circuit hyperexcitability.


Assuntos
Potenciais de Ação/fisiologia , Espinhas Dendríticas/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Ácido Glutâmico/metabolismo , Sinapses/metabolismo , Animais , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Masculino , Camundongos , Camundongos Knockout , Neurogênese , Neurônios/metabolismo , Neurônios/ultraestrutura , Técnicas de Patch-Clamp , Córtex Somatossensorial/citologia , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA