Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Plant Dis ; 107(5): 1491-1498, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36320132

RESUMO

The pale cyst nematode Globodera pallida is a highly specialized, economically important pest for potato production. The specialized hatching requirements, ability to adapt, and the loss of effective control strategies such as methyl bromide fumigation increase the challenge to eradicate G. pallida in Idaho. Without a suitable host, this nematode can remain dormant as encysted eggs in soil for up to 20 years. In this study, we first demonstrated that Sinapis alba seed meal extract (SME) or 4-hydroxybenzyl alcohol (HBA), under laboratory and greenhouse conditions, enhances G. pallida egg hatch rate when exposed to potato root diffusate (PRD). This hatch rate enhancement in the presence of PRD is speculated to be due to an increase in egg-shell permeability. We then tested the efficacy of (i) Solanum sisymbriifolium following prior treatment with S. alba SME (0 and 4.48 t/ha) or HBA (0 and 0.12 t/ha) and (ii) Brassica juncea SME (0, 0.14, 0.56, and 1.12 t/ha) following HBA treatment (0 and 4.48 t/ha) on egg viability, hatch rate, and reproduction of G. pallida encysted eggs. S. sisymbriifolium alone reduced the number of encysted eggs compared to the nontreated control by up to 67%, indicating that this trap crop triggered G. pallida eggs to hatch. When combined with S. alba SME or HBA, S. sisymbriifolium significantly reduced egg count, hatch rate, and viability more than S. sisymbriifolium alone. The combination of S. sisymbriifolium with HBA or S. alba SME eliminated G. pallida reproduction on the susceptible potato. All the tested rates of B. juncea SME alone or with HBA reduced egg hatch rate, viability, and reproduction compared to the nontreated control. Combining HBA and B. juncea SME further significantly reduced egg hatch rate, viability, and reproduction than those rates of B. juncea SME alone.


Assuntos
Solanum tuberosum , Solanum , Mostardeira , Sinapis , Extratos Vegetais/farmacologia , Sementes
2.
J Nematol ; 532021.
Artigo em Inglês | MEDLINE | ID: mdl-34761229

RESUMO

Globodera ellingtonae was originally described from populations collected in the United States. In the original description, ribosomal DNA loci from Globodera sp. collected in Chile and Argentina were similar to G. ellingtonae, suggesting this nematode originated in this region of South America. In an effort to find additional populations of G. elllingtonae, collection trips were conducted in 2017 and 2020 in the Antofagasta and Arica y Parinacota Regions in Northern Chile, respectively. Globodera sp. were more prevalent in Antofagasta (17 samples collected, 53% positive for Globodera sp.) than in Arica y Parincota (16 samples collected, 13% positive for Globodera sp.). The genomes of single cysts (N ≥ 3) from four fields were sequenced. Additionally, the genomes of the G. ellingtonae population from Oregon and a Globodera sp. population originally collected in Antofagasta Region but maintained in culture in France were also sequenced. Based upon a HSP90 sequenced data mined from WSG data, all of the populations from the Antofagasta Region were G. ellingtonae and grouped in a monophyletic clade. A population collected from the Arica y Parincota Region was identified as G. rostochiensis based upon HSP90 data. Genome-wide SNP patterns of the G. ellingtonae populations showed strong clustering based on geographic location indicating that G. ellingtonae has high genetic diversity within Chile. A phylogenetic tree derived from 168,354 binary SNPs in the nuclear genome showed separate but distinct clustering of the Oregon population and the population from Antofagasta maintained in France. The Oregon G. ellingtonae population subtended the Chilean clades and placed on a long branch representing approximately twice the genetic variation observed among all Chilean G. ellingtonae populations. The possibility remains that G. ellingtonae from Chile may be sufficiently diverged to constitute a new species from G. ellingtonae originally described from a population collected in Oregon.

3.
Phytopathology ; 110(2): 379-392, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31573395

RESUMO

The potato cyst nematode Globodera pallida is a globally regulated potato pest. It was detected for the first time in the United States in the state of Idaho in 2006, and as of February 2019, the infestation is limited to 1,326 hectares. G. pallida is a specialized obligate sedentary endoparasite that can survive in the soil for up to 30 years in the absence of its potato host. In highly infested fields, the nematode can reduce tuber yields up to 80% and is spread mainly through the movement of soil, tubers, or farm equipment. The objectives of this study were to describe the spatiotemporal pattern of G. pallida in infested fields and model its dispersal patterns in southeastern Idaho. We used geostatistical tools and simulation models for precise mapping and to describe the relationships between G. pallida incidence and the spatial configurations. We found that the nematode is spatially clustered and prevalent around edges of fields, and its dispersal pattern followed the direction of cultivation. We found that the absence of potato in an infested field significantly reduced the number of cysts sampled each year subsequent to the initial delimitation sampling in 2007. Phytosanitary measures prohibiting the growth of potato contributed to stopping nematode reproduction, and the use of chemical fumigants and biofumigant cover crops contributed to a significant reduction in egg viability. We observed a process of a nonlinear decline in the prevalence of cysts as the distance separation from the primary infestation focus increased. A power law model was used to fit G. pallida dispersal capabilities. This study contributed to describing G. pallida infestation for Idaho. The goal of this study is to provide information on the spatial pattern and landscape ecology of G. pallida in Idaho for policy makers, industry, and researchers as well as facilitate common understandings on the challenges and opportunities for controlling this pest in Idaho.


Assuntos
Solanum tuberosum , Tylenchoidea , Animais , Idaho , Doenças das Plantas , Análise Espaço-Temporal
4.
Plant Dis ; 103(12): 3117-3128, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31634034

RESUMO

Globodera pallida is a major nematode pest of potato (Solanum tuberosum) and is of great economic importance for the potato industry. Assessing potato yield loss caused by the Idaho G. pallida population under field conditions was not performed due to its quarantine status in Idaho, where it is prohibited by regulatory statutes to grow potato in any infested fields. The experimental data came from three trials that were conducted under greenhouse conditions. A predictive risk model analysis was performed to: (i) determine the effect of the Idaho population of G. pallida on potato yield; (ii) estimate reproduction rate from different initial nematode densities; and (iii) simulate potato yield losses in Idaho field conditions by integrating the coefficients of potato yield into the SUBSTOR-DSSAT crop simulation model. Experiments were conducted under greenhouse conditions using five initial G. pallida soil infestation levels (0, 10, 20, 40, and 80 eggs/g soil). The coefficients of potato yield achieved under each initial nematode density were integrated into the SUBSTOR-DSSAT potato growth simulation model. The model showed that tuber weight reached a maximum yield of 96 ton/ha in noninfested soil. Based on the greenhouse trials, the model predicted a minimum yield of 12 and 58 ton/ha in trial 1 and trial 2/3 respectively, when initial nematode density was 80 eggs/g soil. In trial 1, tuber weight was significantly reduced by 44% at 40 eggs/g soil and by 87% at 80 eggs/g soil, and 20% at 40 eggs/g soil and by 39% at 80 eggs/g soil in trial 2/3. The outputs of this study should facilitate common understanding between regulators, policymakers, and potato growers on the challenges and opportunities for controlling this economically important pest in Idaho.


Assuntos
Agricultura , Modelos Biológicos , Solo , Solanum tuberosum , Tylenchoidea , Agricultura/métodos , Animais , Idaho , Solo/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/fisiologia
5.
J Nematol ; 51: 1-11, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31132006

RESUMO

The effect of the nematode trap crop Solanum sisymbriifolium was assessed against three Globodera spp., the potato cyst nematode Globodera pallida (in Idaho), the recently described Globodera ellingtonae (in Oregon), and the tobacco cyst nematode Globodera tabacum (in Connecticut) in field trials. At all locations the ability of S. sisymbriifolium to reduce Globodera encysted second-stage juveniles (J2) in egg densities compared to fallow was considered. For G. ellingtonae, the impact of planting and termination dates of S. sisymbriifolium on final egg densities was also evaluated; and for G. pallida, the ability of the nematode to reproduce on potato (Solanum tuberosum) after exposure to S. sisymbriifolium was determined. Encysted J2 in egg densities of all three Globodera spp. declined from 25 to 68% after trap cropping with S. sisymbriifolium. For G. pallida, S. sisymbriifolium reduced final encysted J2 in egg density by 23 to 50% compared to the fallow treatment, and significantly decreased G. pallida reproduction on potato after exposure to S. sisymbriifolium by 99 to 100% compared to the fallow treatment (P < 0.0001). For G. ellingtonae, the planting date of S. sisymbriifolium in May or June did not impact final egg densities (P = 0.32). Rather, percentage reduction in G. ellingtonae encysted J2 in egg density was most influenced by the length of time to which nematodes were exposed to S. sisymbriifolium, with 30 and 81% reduction after 6 vs 12 wk of exposure, respectively (P < 0.0001). Similar levels of nematode reduction after S. sisymbriifolium were observed for G. tabacum after 12 to 14 wk of exposure to the trap crop; G. tabacum density changes consisted of a 114% increase after susceptible tobacco, a 65% decrease after resistant tobacco, and an 88% decrease after S. sisymbriifolium compared to bare soil. In conclusion, this research demonstrates the widespread applicability of S. sisymbriifolium in reducing a diversity of Globodera spp. present in the USA.The effect of the nematode trap crop Solanum sisymbriifolium was assessed against three Globodera spp., the potato cyst nematode Globodera pallida (in Idaho), the recently described Globodera ellingtonae (in Oregon), and the tobacco cyst nematode Globodera tabacum (in Connecticut) in field trials. At all locations the ability of S. sisymbriifolium to reduce Globodera encysted second-stage juveniles (J2) in egg densities compared to fallow was considered. For G. ellingtonae, the impact of planting and termination dates of S. sisymbriifolium on final egg densities was also evaluated; and for G. pallida, the ability of the nematode to reproduce on potato (Solanum tuberosum) after exposure to S. sisymbriifolium was determined. Encysted J2 in egg densities of all three Globodera spp. declined from 25 to 68% after trap cropping with S. sisymbriifolium. For G. pallida, S. sisymbriifolium reduced final encysted J2 in egg density by 23 to 50% compared to the fallow treatment, and significantly decreased G. pallida reproduction on potato after exposure to S. sisymbriifolium by 99 to 100% compared to the fallow treatment (P < 0.0001). For G. ellingtonae, the planting date of S. sisymbriifolium in May or June did not impact final egg densities (P = 0.32). Rather, percentage reduction in G. ellingtonae encysted J2 in egg density was most influenced by the length of time to which nematodes were exposed to S. sisymbriifolium, with 30 and 81% reduction after 6 vs 12 wk of exposure, respectively (P < 0.0001). Similar levels of nematode reduction after S. sisymbriifolium were observed for G. tabacum after 12 to 14 wk of exposure to the trap crop; G. tabacum density changes consisted of a 114% increase after susceptible tobacco, a 65% decrease after resistant tobacco, and an 88% decrease after S. sisymbriifolium compared to bare soil. In conclusion, this research demonstrates the widespread applicability of S. sisymbriifolium in reducing a diversity of Globodera spp. present in the USA.

6.
Phytopathology ; 108(8): 988-1001, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29533165

RESUMO

The potato cyst nematode Globodera pallida is a globally regulated and quarantine potato pest. It was detected for the first time in the United States in the state of Idaho in 2006. A spatial analysis was performed to (i) understand the spatial arrangement of fields infested with G. pallida in southern Idaho using spatial point pattern analysis, and (ii) evaluate the potential threat of G. pallida for entry to new areas using spatial interpolation techniques. Data point locations, cyst numbers and egg viability values for each infested field were collected by USDA-APHIS during 2006 to 2014. Results showed the presence of spatially clustered fields infested with G. pallida (P = 0.003). We determined that the spread of G. pallida grew in diameter from the original center of infestation toward the southwest as an ellipsoidal-shaped cluster. Based on the aggregated spatial pattern of distribution, we determined that G. pallida spread followed a contagion effect scenario, where nearby infested fields contributed to the infestation of new fields, probably through soil contaminated agricultural equipment or tubers. We determined that the presence of G. pallida in southern Idaho is unlikely to be associated with new introductions from outside the state of Idaho. The aggregation pattern of fields infested with G. pallida, with an average of 4,263 cysts/ha and egg viability of 25%, facilitates quarantine activities and confines the propagation of this pest to a small area, which in 2017 was estimated to be 1,233 ha. The tools and methods provided in this study facilitate comprehensive approaches to improve G. pallida control and eradication programs as well as to raise public awareness of the problems surrounding this economically important potato pest.


Assuntos
Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/fisiologia , Algoritmos , Animais , Idaho
7.
FEMS Microbiol Lett ; 69(2): 135-40, 1992 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-1537541

RESUMO

Spontaneous mutants of Rhizobium leguminosarum biovar viciae strain C1204b were selected for their ability to tolerate 0.2 M NaCl, a growth-inhibiting level of salt for the parental strain. Transposon-mediated salt-sensitive mutants of strain C1204b were screened for their inability to grow in 0.08 M NaCl. Quantitation of the free-amino acid pools in the mutants grown in NaCl revealed a dramatic increase in glutamine, serine, glutamate and proline, and to a lesser extent alanine and glycine in the salt-tolerant mutants in comparison with the parental strain exposed to NaCl; but only glutamate and proline increased in the salt-sensitive mutants under NaCl stress. Extracellular polysaccharide levels were quantitated for the salt-tolerant mutants and determined to be approximately two-fold higher than for the parental strain. Although the mutations that occurred in the NaCl-tolerant and NaCl-sensitive strains did not interfere with nodule formation, no nitrogenase activity could be observed in the NaCl tolerant mutants as evaluated by acetylene reduction.


Assuntos
Mutação , Rhizobium leguminosarum/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Aminoácidos/efeitos dos fármacos , Fabaceae/microbiologia , Fenótipo , Plantas Medicinais , Polissacarídeos Bacterianos/biossíntese , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/crescimento & desenvolvimento , Especificidade da Espécie
8.
Appl Environ Microbiol ; 63(8): 3211-7, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16535675

RESUMO

Geostatistical analysis was used to compare rhizoplane colonization patterns of an antibiotic-producing biological control bacterium versus a non-antibiotic-producing mutant strain. Pea seeds were inoculated with Pseudomonas fluorescens 2-79RN(inf10) or P. fluorescens 2-79-B46 (a phenazine-deficient Tn5 mutant of P. fluorescens 2-79RN(inf10)) (10(sup8) CFU/pea), planted in sterile sand, and incubated at 20(deg)C. After 3 days, seedlings were prepared for scanning electron microscopy. Photomicrographs (x1,000) of the root surface were taken at the seed-root junction and at 0.5-cm intervals to the root tip. Bacterial counts on the root surface were made in 5- by 5-(mu)m sample units over an area which was 105 by 80 (mu)m. Coordinates and number of bacteria were recorded for each sample unit. Spatial statistics were calculated by covariance for the following directions: omnidirectional, 0, 45, 90, and 135(deg). The ranges of spatial influence and nugget (estimator of spatially dependent variation) were determined. For both P. fluorescens 2-79RN(inf10) and P. fluorescens 2-79-B46, spatial structure was evident along the entire root, particularly in the 0(deg) direction (along the root length) (e.g., range = 24 (mu)m, nugget = 0.52). The degree of spatial dependence observed indicated aggregation of bacterial cells. No differences were detected in the spatial patterns of colonies of P. fluorescens 2-79RN(inf10) and P. fluorescens 2-79-B46, indicating that the lack of phenazine production did not influence spatial patterns on the rhizoplane.

9.
Can J Microbiol ; 46(11): 1051-7, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11109495

RESUMO

The effects of soil amendment with rapeseed meal from Brassica napus cv. 'Dwarf Essex' (high glucosinolate concentrations) and 'Stonewall' (low glucosinolate concentrations) on the biological control activity of Trichoderma harzianum towards Sclerotinia sclerotiorum and Aphanomyces euteiches were evaluated. Trichoderma harzianum added to soil reduced myceliogenic germination of S. sclerotiorum by 94%, but did not affect carpogenic germination. In contrast, 100% reduction in carpogenic germination was observed in soil amended with Dwarf Essex meal, along with a 33% reduction in myceliogenic germination. With Stonewall meal as soil amendment, carpogenic germination was reduced by 44% and myceliogenic germination was not affected. Both Dwarf Essex and Stonewall meals inhibited colonization of sclerotia in soil by T. harzianum, from 100% to 0% and 8%, respectively, so that biocontrol activity of T. harzianum was reduced in the presence of either meal. Aphanomyces euteiches root rot of pea was significantly reduced by T. harzianum alone (100%), by amendment with Dwarf Essex meal alone (77%), and by T. harzianum in combination with Dwarf Essex meal (100%). Amendment with Stonewall meal alone did not control root rot, and combination of Stonewall meal with T. harzianum reduced the biocontrol efficacy of T. harzianum.


Assuntos
Controle Biológico de Vetores/métodos , Doenças das Plantas/microbiologia , Microbiologia do Solo , Trichoderma , Ascomicetos/crescimento & desenvolvimento , Brassica , Glucosinolatos/farmacologia , Oomicetos/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
10.
Appl Environ Microbiol ; 57(10): 2864-7, 1991 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16348562

RESUMO

The biocontrol fungi Trichoderma harzianum, used to control soilborne plant pathogens, and Beauveria bassiana, used to control insect pests, were formulated as mycelial biomass in alginate pellets with wheat bran added. After drying for 0, 4, or 16 h, pellets were placed in water or in aqueous solutions of polyethylene glycol (PEG) 8000 for 4 to 24 h and then allowed to continue drying. PEG-treated pellets containing T. harzianum showed significantly greater proliferation of hyphae in soil than untreated pellets or pellets treated with water. Production of conidia of T. harzianum from PEG-treated pellets was lower than production from untreated pellets after 4 days, although rates were equivalent after 7 days. In contrast, production of conidia of B. bassiana was significantly more rapid from PEG-treated pellets than from untreated pellets. Biocontrol of soilborne plant pathogens or insect pests may be enhanced by rapid hyphal growth of T. harzianum in soil or rapid sporulation of B. bassiana on foliage, respectively. Therefore, PEG treatment may improve the efficacy of these biocontrol agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA