Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Inorg Chem ; 57(8): 4556-4562, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29608296

RESUMO

The reaction of CuCl2 with 2,9-dimethyl-1,10-phenanthroline (dmp) does not lead to the formation of [Cu(dmp)2](Cl)2 but instead to [Cu(dmp)2Cl]Cl, a 5-coordinated complex, in which one chloride is directly coordinated to the metal center. Attempts at removing the coordinated chloride by changing the counterion by metathesis were unsuccessful and resulted only in the exchange of the noncoordinated chloride, as confirmed from a crystal structure analysis. Complex [Cu(dmp)2Cl]PF6 exhibits a reversible cyclic voltammogram characterized by a significant peak splitting between the reductive and oxidative waves (0.85 and 0.60 V vs NHE, respectively), with a half-wave potential E1/2 = 0.73 V vs NHE. When reduced electrochemically, the complex does not convert into [Cu(dmp)2]+, as one may expect. Instead, [Cu(dmp)2]+ is isolated as a product when the reduction of [Cu(dmp)2Cl]PF6 is performed with l-ascorbic acid, as confirmed by electrochemistry, NMR spectroscopy, and diffractometry. [Cu(dmp)2]2+ complexes can be synthesized starting from Cu(II) salts with weakly and noncoordinating counterions, such as perchlorate. Growth of [Cu(dmp)2](ClO4)2 crystals in acetonitrile results in a 5-coordinated complex, [Cu(dmp)2(CH3CN)](ClO4)2, in which a solvent molecule is coordinated to the metal center. However, solvent coordination is associated with a dynamic decoordination-coordination behavior upon reduction and oxidation. Hence, the cyclic voltammogram of [Cu(dmp)2(CH3CN)]2+ is identical to the one of [Cu(dmp)2]+, if the measurements are performed in acetonitrile. The current results show that halide ions in precursors to Cu(II) metal-organic coordination compound synthesis, and most likely also other multivalent coordination centers, are not readily exchanged when exposed to presumed strongly binding and chelating ligand, and thus special care needs to be taken with respect to product characterization.

2.
Faraday Discuss ; 198: 169-179, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28276546

RESUMO

A water oxidation electrocatalyst with high activity is essential for promoting the overall efficiency of an integrated water splitting device. Herein, by investigating the prominent temperature dependence of electrocatalytic water oxidation catalyzed by first row transition metal oxides, we present how to elevate the operating temperature of the electrolyzer as an effective and universal method to improve its electrocatalytic performance. Consequently, a triple device model combining a photothermal collector with a photovoltaic (PV) cell coupled to a water splitting device is proposed to realize the comprehensive and efficient utilization of solar energy: solar heat + PV + electrolyzer.

3.
Angew Chem Int Ed Engl ; 56(12): 3289-3293, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28194910

RESUMO

Noble-metal-free bimetal-based electrocatalysts have shown high efficiency for water oxidation. Ni and/or Co in these electrocatalysts are essential to provide a conductive, high-surface area and a chemically stable host. However, the necessity of Ni or Co limits the scope of low-cost electrocatalysts. Herein, we report a hierarchical hollow FeV composite, which is Ni- and Co-free and highly efficient for electrocatalytic water oxidation with low overpotential 390 mV (10 mA cm-2 catalytic current density), low Tafel slope of 36.7 mV dec-1 , and a considerable durability. This work provides a novel and efficient catalyst, and greatly expands the scope of low-cost Fe-based electrocatalysts for water splitting without need of Ni or Co.

4.
J Am Chem Soc ; 137(28): 9153-9, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26132113

RESUMO

Light driven water splitting was achieved by a tandem dye-sensitized photoelectrochemical cell with two photoactive electrodes. The photoanode is constituted by an organic dye L0 as photosensitizer and a molecular complex Ru1 as water oxidation catalyst on meso-porous TiO2, while the photocathode is constructed with an organic dye P1 as photoabsorber and a molecular complex Co1 as hydrogen generation catalyst on nanostructured NiO. By combining the photocathode and the photoanode, this tandem DS-PEC cell can split water by visible light under neutral pH conditions without applying any bias.

5.
Inorg Chem ; 54(6): 2742-51, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25700086

RESUMO

Two molecular assemblies with one Ru(II)-polypyridine photosensitizer covalently linked to one Ru(II)(bda)L2 catalyst (1) (bda = 2,2'-bipyridine-6,6'-dicarboxylate) and two photosensitizers covalently linked to one catalyst (2) have been prepared using a simple C-C bond as the linkage. In the presence of sodium persulfate as a sacrificial electron acceptor, both of them show high activity for catalytic water oxidation driven by visible light, with a turnover number up to 200 for 2. The linked photocatalysts show a lower initial yield for light driven oxygen evolution but a much better photostability compared to the three component system with separate sensitizer, catalyst and acceptor, leading to a much greater turnover number. Photocatalytic experiments and time-resolved spectroscopy were carried out to probe the mechanism of this catalysis. The linked catalyst in its Ru(II) state rapidly quenches the sensitizer, predominantly by energy transfer. However, a higher stability under photocatalytic condition is shown for the linked sensitizer compared to the three component system, which is attributed to kinetic stabilization by rapid photosensitizer regeneration. Strategies for employment of the sensitizer-catalyst molecules in more efficient photocatalytic systems are discussed.

6.
Phys Chem Chem Phys ; 16(46): 25234-40, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25341620

RESUMO

Photoelectrochemical (PEC) cells using molecular catalysts to split water into hydrogen and oxygen have been investigated intensively during the past years. However, the high-cost of Pt counter electrodes and instability of molecular PEC cells hinder the practical applications. We describe in this article a Pt-free tandem molecular PEC cell, for the first time, employing molecular ruthenium- and cobalt-catalysts with strong dipicolinic acid anchoring groups on the respective photoanode and photocathode for total water splitting. The Pt-free tandem molecular PEC cell showed an effective and steady photocurrent density of ca. 25 µA cm(-2) for water splitting driven by visible light without external bias. This study indicates that tandem molecular PEC cells can provide great potential to the Pt-free devices for light driven total water splitting.

7.
iScience ; 4: 144-152, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30240736

RESUMO

Identifying surface active intermediate species is essential to reveal the catalytic mechanism of water oxidation by metal-oxides-based catalysts and to develop more efficient catalysts for oxygen-oxygen bond formation. Here we report, through electrochemical methods and ex situ infrared spectroscopy, the identification of a MnVII = O intermediate during catalytic water oxidation by a c-disordered δ-MnOx with an onset-potential-dependent reduction peak at 0.93 V and an infrared peak at 912 cm-1. This intermediate is proved to be highly reactive and much more oxidative than permanganate ion. Therefore, we propose a new catalytic mechanism for water oxidation catalyzed by Mn oxides, with involvement of the MnVII = O intermediate in a resting state and the MnIV-O-MnVII = O as a real active species for oxygen-oxygen bond formation.

8.
ACS Omega ; 3(4): 3819-3829, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458623

RESUMO

A series of molecularly engineered and novel dyes WS1, WS2, WS3, and WS4, based on the D35 donor, 1-(4-hexylphenyl)-2,5-di(thiophen-2-yl)-1H-pyrrole and 4-(4-hexylphenyl)-4H-dithieno[3,2-b:2',3'-d]pyrrole as π-conjugating linkers, were synthesized and compared to the well-known LEG4 dye. The performance of the dyes was investigated in combination with an electrolyte based on Co(II/III) complexes as redox shuttles. The electron recombination between the redox mediators in the electrolyte and the TiO2 interface decreases upon the introduction of 4-hexylybenzene entities on the 2,5-di(thiophen-2-yl)-1H-pyrrole and 4H-dithieno[3,2-b:2',3'-d]pyrrole linker units, probably because of steric hindrance. The open circuit photovoltage of WS1-, WS2-, WS3-, and WS4-based devices in combination with the Co(II/III)-based electrolyte are consistently higher than those based on a I-/I3 - electrolyte by 105, 147, 167, and 75 mV, respectively. The WS3-based devices show the highest power conversion efficiency of 7.4% at AM 1.5 G 100 mW/cm2 illumination mainly attributable to the high open-circuit voltage (V OC).

9.
ACS Nano ; 12(10): 10452-10462, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30207694

RESUMO

Chemical doping of organic semiconductors has been recognized as an effective way to enhance the electrical conductivity. In perovskite solar cells (PSCs), various types of dopants have been developed for organic hole transport materials (HTMs); however, the knowledge of the basic requirements for being efficient dopants as well as the comprehensive roles of the dopants in PSCs has not been clearly revealed. Here, three copper-based complexes with controlled redox activities are applied as dopants in PSCs, and it is found that the oxidative reactivity of dopants presents substantial impacts on conductivity, charge dynamics, and solar cell performance. A significant improvement of open-circuit voltage ( Voc) by more than 100 mV and an increase of power conversion efficiency from 13.2 to 19.3% have been achieved by tuning the doping level of the HTM. The observed large variation of Voc for three dopants reveals their different recombination kinetics at the perovskite/HTM interfaces and suggests a model of an interfacial recombination mechanism. We also suggest that the dopants in HTMs can also affect the charge recombination kinetics as well as the solar cell performance. Based on these findings, a strategy is proposed to physically passivate the electron-hole recombination by inserting an ultrathin Al2O3 insulating layer between the perovskite and the HTM. This strategy contributes a significant enhancement of the power conversion efficiency and environmental stability, indicating that dopant engineering is one crucial way to further improve the performance of PSCs.

10.
Nat Commun ; 9(1): 381, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374160

RESUMO

Electrochemical water splitting requires efficient water oxidation catalysts to accelerate the sluggish kinetics of water oxidation reaction. Here, we report a promisingly dendritic core-shell nickel-iron-copper metal/metal oxide electrode, prepared via dealloying with an electrodeposited nickel-iron-copper alloy as a precursor, as the catalyst for water oxidation. The as-prepared core-shell nickel-iron-copper electrode is characterized with porous oxide shells and metallic cores. This tri-metal-based core-shell nickel-iron-copper electrode exhibits a remarkable activity toward water oxidation in alkaline medium with an overpotential of only 180 mV at a current density of 10 mA cm-2. The core-shell NiFeCu electrode exhibits pH-dependent oxygen evolution reaction activity on the reversible hydrogen electrode scale, suggesting that non-concerted proton-electron transfers participate in catalyzing the oxygen evolution reaction. To the best of our knowledge, the as-fabricated core-shell nickel-iron-copper is one of the most promising oxygen evolution catalysts.

11.
ChemSusChem ; 10(22): 4472-4478, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-28675680

RESUMO

The development of manganese-based water oxidation electrocatalysts is desirable for the production of solar fuels, as manganese is earth-abundant, inexpensive, non-toxic, and has been employed by the Photosystem II in nature for a billion years. Herein, we directly constructed a 3 D nanoarchitectured turbostratic δ-MnOx on carbon nanotube-modified nickel foam (MnOx /CNT/NF) by electrodeposition and a subsequent annealing process. The MnOx /CNT/NF electrode gives a benchmark catalytic current density (10 mA cm-2 ) at an overpotential (η) of 270 mV under alkaline conditions. A steady current density of 19 mA cm-2 is obtained during electrolysis at 1.53 V for 1.0 h. To the best of our knowledge, this work represents the most efficient manganese-oxide-based water oxidation electrode and demonstrates that manganese oxides, as a structural and functional model of oxygen-evolving complex (OEC) in Photosystem II, can also become comparable to those of most Ni- and Co-based catalysts.


Assuntos
Técnicas Eletroquímicas/métodos , Compostos de Manganês/química , Nanotubos de Carbono/química , Óxidos/química , Água/química , Catálise , Eletrodos , Mimetismo Molecular , Oxirredução , Complexo de Proteína do Fotossistema II/química , Energia Solar
12.
Dalton Trans ; 45(37): 14689-96, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27241474

RESUMO

With the incorporation of pyrazole and DMSO as axial ligands, a series of tailor-designed Ru water oxidation catalysts [Ru(bda)(DMSO)(L)] (H2bda = 2,2'-bypyridine-6,6'-dicarboxylic acid; DMSO = dimethyl sulfoxide; L = pyrazole, A-1; 4-Br-3-methyl pyrazole, B-1) and [Ru(bda)(L)2] (L = pyrazole, A-2; 4-Br-3-methyl pyrazole, B-2) have been generated in situ from their corresponding precursors [Ru(κ3(O,N,N)-bda)(DMSO)x(L)3-x] which are in a zwitterionic form with an extra pyrazole based ligand in the equatorial position. Formation of the active catalyst has been investigated under pH 1.0 conditions. Electrochemistry and water oxidation activity of these catalysts were investigated. By fine tuning of the catalyst structure, the turnover frequency was increased up to 500 s(-1) and the stability over 6000 turnovers.

13.
Nat Commun ; 7: 11981, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27306541

RESUMO

Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel-vanadium-layered double hydroxide that shows a current density of 27 mA cm(-2) (57 mA cm(-2) after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel-iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel-vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting.

14.
Chem Commun (Camb) ; 52(100): 14478-14481, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27904897

RESUMO

Iron porphyrins Fe-pE, Fe-mE, and Fe-oE were synthesized and their electrochemical behavior for CO2 reduction to CO has been investigated. The controlled potential electrolysis of Fe-mE gave exclusive 65% Faradaic efficiency (FE) whereas Fe-oE achieved quasi-quantitative 98% FE (2% H2) for CO production.

15.
ChemSusChem ; 8(19): 3242-7, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26315677

RESUMO

Photoelectrochemical (PEC) cells for light-driven water splitting are prepared using hematite nanorod arrays on conductive glass as the photoanode. These devices improve the photocurrent of the hematite-based photoanode for water splitting, owing to fewer surface traps and decreased electron recombination resulting from the one-dimensional structure. By employing a molecular ruthenium co-catalyst, which contains a strong 2,6-pyridine-dicarboxylic acid anchoring group at the hematite photoanode, the photocurrent of the PEC cell is enhanced with high stability for over 10 000 s in a 1 m KOH solution. This approach can pave a route for combining one-dimensional nanomaterials and molecular catalysts to split water with high efficiency and stability.


Assuntos
Compostos Férricos/química , Nanotubos/química , Processos Fotoquímicos , Rutênio/química , Água/química , Catálise , Eletroquímica , Eletrodos , Luz , Oxirredução
16.
Chem Commun (Camb) ; 51(37): 7883-6, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25854858

RESUMO

A simple strategy to immobilize highly efficient ruthenium based molecular water-oxidation catalysts on the basal-plane pyrolytic graphite electrode (BPG) by polymerization has been demonstrated. The electrode 1@BPG has obtained a high initial turnover frequency (TOF) of 10.47 s(-1) at ∼700 mV overpotential, and a high turnover number (TON) up to 31600 in 1 h electrolysis.

17.
Chem Commun (Camb) ; 50(90): 13948-51, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25265253

RESUMO

Electrochemically driven water oxidation has been performed using a molecular water oxidation catalyst immobilized on hybrid carbon nanotubes and nano-material electrodes. A high turnover frequency (TOF) of 7.6 s(-1) together with a high catalytic current density of 2.2 mA cm(-2) was successfully obtained at an overpotential of 480 mV after 1 h of bulk electrolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA