Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PeerJ ; 11: e14598, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710873

RESUMO

Gut microbiota studies often rely on a single sample taken per individual, representing a snapshot in time. However, we know that gut microbiota composition in many animals exhibits intra-individual variation over the course of days to months. Such temporal variations can be a confounding factor in studies seeking to compare the gut microbiota of different wild populations, or to assess the impact of medical/veterinary interventions. To date, little is known about the variability of the koala (Phascolarctos cinereus) gut microbiota through time. Here, we characterise the gut microbiota from faecal samples collected at eight timepoints over a month for a captive population of South Australian koalas (n individuals = 7), and monthly over 7 months for a wild population of New South Wales koalas (n individuals = 5). Using 16S rRNA gene sequencing, we found that microbial diversity was stable over the course of days to months. Each koala had a distinct faecal microbiota composition which in the captive koalas was stable across days. The wild koalas showed more variation across months, although each individual still maintained a distinct microbial composition. Per koala, an average of 57 (±16) amplicon sequence variants (ASVs) were detected across all time points; these ASVs accounted for an average of 97% (±1.9%) of the faecal microbial community per koala. The koala faecal microbiota exhibits stability over the course of days to months. Such knowledge will be useful for future studies comparing koala populations and developing microbiota interventions for this regionally endangered marsupial.


Assuntos
Microbiota , Phascolarctidae , Animais , Phascolarctidae/genética , Individualidade , RNA Ribossômico 16S/genética , Austrália
2.
Lancet Planet Health ; 6(9): e769-e773, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36087607

RESUMO

COVID-19 has devastated global communities and economies. The pandemic has exposed socioeconomic disparities and weaknesses in health systems worldwide. Long-term health effects and economic recovery are major concerns. Ecosystem restoration-ie, the repair of ecosystems that have been degraded-relates directly to tackling the health and socioeconomic burdens of COVID-19, because stable and resilient ecosystems are fundamental determinants of health and socioeconomic stability. Here, we use COVID-19 as a case study, showing how ecosystem restoration can reduce the risk of infection and adverse sequelae and have an integral role in humanity's recovery from COVID-19. The next decade will be crucial for humanity's recovery from COVID-19 and for ecosystem repair. Indeed, in the absence of effective, large-scale restoration, 95% of the Earth's land could be degraded by 2050. The UN Decade on Ecosystem Restoration (2021-30) declaration reflects the growing urgency and scale at which we should repair ecosystems. Importantly, ecosystem restoration could also help to combat the health and socioeconomic issues that are associated with COVID-19, yet it is poorly integrated into current responses to the disease. Ecosystem restoration can be a core public health intervention and assist in COVID-19 recovery if it is closely integrated with socioeconomic, health, and environmental policies.


Assuntos
COVID-19 , Ecossistema , Conservação dos Recursos Naturais , Política Ambiental , Humanos
3.
Artigo em Inglês | MEDLINE | ID: mdl-17933571

RESUMO

Elasmosaurs were extremely long-necked, aquatic reptiles that used four flippers for locomotion. Their distinctive long neck distinguishes them from all other Mesozoic forms, yet the potential uses and constraints of this structure are poorly understood, particularly with regard to feeding. Several associated series of elasmosaurian cervical vertebrae were used to measure ranges of potential flexion. Two-dimensional models, based on a complete specimen of the Late Cretaceous elasmosaur Aphrosaurus furlongi, were created to measure mobility in both vertical and horizontal planes. Accuracy of the models was assessed through comparative analyses with currently extant vertebrate analogues (e.g. snake, turtle, seal). Results suggest that the elasmosaurian neck was capable of a 75-177 degrees ventral, 87-155 degrees dorsal, and 94-176 degrees lateral range of movement depending upon the thickness of cartilage reconstructed between each vertebra. Neck postures such as a 'swan-like' S-shape are shown to be implausible because they require >360 degrees vertical flexion. However, maintenance of a straight neck while swimming, together with considerable lateral and/or ventral movement during prey capture and feeding are feasible.


Assuntos
Dinossauros/anatomia & histologia , Dinossauros/fisiologia , Comportamento Alimentar/fisiologia , Pescoço/anatomia & histologia , Pescoço/fisiologia , Amplitude de Movimento Articular/fisiologia , Animais , Vértebras Cervicais/fisiologia , Modelos Anatômicos , Postura
4.
Front Psychol ; 8: 2094, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29250016

RESUMO

Although the restorative benefits of nature are widely acknowledged, there is a limited understanding of the attributes of natural environments that are fundamental to restorative experiences. Faced with growing human populations and a greater awareness of the wellbeing benefits natural environments provide, park agencies and planners are increasingly challenged with balancing human and ecological outcomes in natural areas. This study examines the physical and experiential qualities of natural environments people referred to when describing their connection to their most valued natural environments in an online questionnaire. Recruited primarily via a public radio program, respondents were asked to identify their favorite places and explain what they loved about those places. Favorite places are considered exemplars of restorative environments and were classified based on an existing park typology. Reasons people liked particular sites were classified into three domains: setting, activity, or benefit. Content analysis was used to identify the attributes most commonly associated with favorite places. These attributes were then related to the four components of restorative environments according to Attention Restoration Theory. In contrast to previous research, we found that "fascination" was the most important component of favorite places. Possible reasons for this contrast, namely, respondents' median age, and the likelihood of a high degree of ecological literacy amongst the study population are discussed. South Australians' favorite environments comprise primarily hilly, wooded nature parks, and botanical gardens, in stark contrast to the vast arid areas that dominate the state. Micro-variables such as birds, plants, wildlife, native species, and biodiversity appear particularly important elements used to explain people's love of these sites. We discuss the implications of these findings and their potential value as an anchor for marketing campaigns seeking to encourage contact with nature, as well as education programs designed to improve people's understanding of important but intangible concepts such as biodiversity. The findings have clear, practical implications for park managers given the modifiable nature of many of the attributes identified as being most important to our respondents, and we believe attention to such elements has the potential to simultaneously enhance people's nature experiences, optimize restorative outcomes, and improve environmental stewardship.

5.
Respir Physiol Neurobiol ; 154(1-2): 118-38, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16877052

RESUMO

Pulmonary surfactant lines the alveolar air-water interface, varying surface tension with lung volume to increase compliance and prevent adhesion of respiratory surfaces. We examined whether the surfactant system of diving mammals exhibits adaptations for more efficient lung function during diving, to complement other respiratory adaptations. Here we review adaptations at the molecular, compositional, functional and cellular levels and during development for animals beginning life on land and progressing to an aquatic environment. Molecular adaptations to diving were examined in surfactant protein C (SP-C) from terrestrial, semi-aquatic and diving mammals using phylogenetic analyses. Diving species exhibited sites under positive selection in the polar N-terminal domain. These amino acid substitutions may lead to stronger binding of SP-C to the phospholipid film and increased adsorption to the air-liquid interface. The concentration of shorter chain phospholipid molecular species was greater and SP-B levels were lower in diving than terrestrial mammals. This may lead to a greater fluidity and explain the relatively poor surface activity of diving mammal surfactant. There were no consistent differences in cholesterol between diving and terrestrial mammals. Surfactant from newborn California sea lions was similar to that of terrestrial mammals. Secretory activity of alveolar type II epithelial cells of sea lions demonstrated an insensitivity to pressure relative to sheep cells. The poor surface activity of diving mammal surfactant is consistent with the hypothesis that it has an anti-adhesive function that develops after the first entry into the water, with a surfactant film that is better suited to repeated collapse and respreading.


Assuntos
Evolução Biológica , Mergulho , Pulmão/fisiologia , Mamíferos/fisiologia , Surfactantes Pulmonares/metabolismo , Adaptação Fisiológica , Animais , Humanos , Lipoproteínas/metabolismo , Pulmão/anatomia & histologia , Pulmão/metabolismo , Modelos Biológicos , Fosfolipídeos/metabolismo
6.
Respir Physiol Neurobiol ; 152(2): 152-68, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16140043

RESUMO

Maintaining a functional pulmonary surfactant system at depth is critical for diving mammals to ensure that inspiration is possible upon re-emergence. The lipid and protein composition of lavage extracts from three pinniped species (California sea lion, Northern elephant seal and Ringed seal) were compared to several terrestrial species. Lavage samples were purified using a NaBr discontinuous gradient. Concentrations of phospholipid classes and molecular species were measured using electrospray ionisation mass spectrometry, cholesterol was measured using high-performance liquid chromatography, surfactant protein A (SP-A) and SP-B were measured using enzyme-linked immunosorbent assays. There were small differences in phospholipid classes, with a lower level of anionic surfactant phospholipids, PG and PI, between diving and terrestrial mammals. There were no differences in PL saturation or SP-A levels between species. PC16:0/14:0, PC16:0/16:1, PC16:0/16:0, long chain PI species and the total concentrations of alkyl-acyl species of PC and PG as a ratio of diacyl species were increased in diving mammals, whereas concentrations of PC16:0/18:1, PG16:0/16:0 and PG16:0/18:1 were decreased. Cholesterol levels were very variable between species and SP-B was very low in diving mammals. These differences may explain the very poor surface activity of pinniped surfactant that we have previously described [Miller, N.J., Daniels, C.B., Schürch, S., Schoel, W.M., Orgeig, S., 2005. The surface activity of pulmonary surfactant from diving mammals. Respir. Physiol. Neurobiol. 150 (2006) 220-232], supporting the hypothesis that pinniped surfactant has primarily an anti-adhesive function to meet the challenges of regularly collapsing lungs.


Assuntos
Mergulho , Pulmão/química , Surfactantes Pulmonares/análise , Surfactantes Pulmonares/metabolismo , Análise de Variância , Animais , Caniformia/classificação , Caniformia/metabolismo , Bovinos , Colesterol/análise , Cromatografia Líquida de Alta Pressão/métodos , Cães , Ensaio de Imunoadsorção Enzimática/métodos , Masculino , Fosfolipídeos/análise , Proteínas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos
7.
Respir Physiol Neurobiol ; 150(2-3): 220-32, 2006 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-16476655

RESUMO

Pinnipeds (seals and sea lions) have developed a specialised respiratory system to cope with living in a marine environment. They have a highly reinforced lung that can completely collapse and reinflate during diving without any apparent side effects. These animals may also have a specialised surfactant system to augment the morphological adaptations. The surface activity of surfactant from four species of pinniped (California sea lion, Northern elephant seal, Northern fur seal and Ringed seal) was measured using a captive bubble surfactometer (CBS), and compared to two terrestrial species (sheep and cow). The surfactant of Northern elephant seal, Northern fur seal and Ringed seal was unable to reduce surface tension (gamma) to normal levels after 5 min adsorption (61.2, 36.7, and 46.2 +/- 1.7 mN/m, respectively), but California sea lion was able to reach the levels of the cow and sheep (23.4 mN/m for California sea lion, 21.6 +/- 0.3 and 23.0 +/- 1.5 mN/m for cow and sheep, respectively). All pinnipeds were also unable to obtain the very low gamma(min) achieved by cow (1.4 +/- 0.1 mN/m) and sheep (1.5 +/- 0.4 mN/m). These results suggest that reducing surface tension to very low values is not the primary function of surfactant in pinnipeds as it is in terrestrial mammals, but that an anti-adhesive surfactant is more important to enable the lungs to reopen following collapse during deep diving.


Assuntos
Caniformia/fisiologia , Mergulho/fisiologia , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Análise de Variância , Animais , Bovinos , Microscopia Eletrônica de Transmissão/métodos , Alvéolos Pulmonares/ultraestrutura , Ovinos , Tensão Superficial
8.
PLoS One ; 11(3): e0150648, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26938258

RESUMO

Knowledge and understanding about how the Earth functions and supports life create the foundation for ecological literacy. Industrialisation, urbanisation and population growth have resulted in changed relationships between many human communities and the natural world. A potential consequence is a compromised capability to make well-informed decisions about how to live sustainably. To gain a measure of ecological literacy within the South Australian community, we collaborated with senior scientists and educators to develop and apply an instrument with the capacity to determine indicative levels of ecological knowledge and understanding. A formal, variable credit, multiple-choice assessment instrument was distributed online to groups and individuals within diverse community sectors and industries. Quantitative analyses of scores indicated that levels of ecological knowledge and understanding within a self-selected sample of over one thousand individuals ranged from very low to extremely high, with the majority of respondents achieving moderate to high scores. This instrument has a demonstrated capacity to determine indicative levels of ecological literacy within and between individuals and groups. It is able to capture mastery of ecological knowledge and understanding achieved through both formal and informal pathways. Using the results, we have been able to establish a range of standards and an aspirational target score for the South Australian community. The value of this work is in its potential to deliver insights into relationships between humans and the rest of the natural world, and into characteristics of eco-literate individuals and communities, that might not otherwise emerge.


Assuntos
Ecologia/educação , Avaliação Educacional/métodos , Projetos de Pesquisa , Adulto , Idoso , Benchmarking , Ecologia/ética , Feminino , Humanos , Desenvolvimento Industrial , Masculino , Pessoa de Meia-Idade , Fatores Socioeconômicos , Austrália do Sul , Urbanização
9.
Biochim Biophys Acta ; 1580(1): 57-66, 2002 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-11923100

RESUMO

The primary function of pulmonary surfactant is to reduce the surface tension (ST) created at the air-liquid interface in the lung. Surfactant is a complex mixture of lipids and proteins and its function is influenced by physiological parameters such as metabolic rate, body temperature and breathing. In the microchiropteran bat Chalinolobus gouldii these parameters fluctuate throughout a 24 h period. Here we examine the surface activity of surfactant from warm-active and torpid bats at both 24 degrees C and 37 degrees C to establish whether alterations in surfactant composition correlate with changes in surface activity. Bats were housed in a specially constructed bat room at Adelaide University, at 24 degrees C and on a 8:16 h light:dark cycle. Surfactant was collected from bats sampled during torpor (2535 degrees C). Alterations in the lipid composition of surfactant occur with changes in the activity cycle. Most notable is an increase in surfactant cholesterol (Chol) with decreases in body temperature [Codd et al., Physiol. Biochem. Zool. 73 (2000) 605-612]. Surfactant from active bats was more surface active at higher temperatures, indicated by lower ST(min) and less film area compression required to reach ST(min) at 37 degrees C than at 24 degrees C. Conversely, surfactant from torpid bats was more active at lower temperatures, indicated by lower ST(min) and less area compression required to reach ST(min) at 24 degrees C than at 37 degrees C. Alterations in the Chol content of bat surfactant appear to be crucial to allow it to achieve low STs during torpor.


Assuntos
Quirópteros/fisiologia , Animais , Temperatura Corporal , Colesterol/análise , Periodicidade , Surfactantes Pulmonares/química , Surfactantes Pulmonares/fisiologia , Reto , Propriedades de Superfície , Tensão Superficial
10.
FASEB J ; 17(3): 479-81, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12514111

RESUMO

Impaired lymphatic drainage in human limbs causes the debilitating swelling termed lymphoedema. In mammals, known growth factors involved in the control of lymphangiogenesis (growth of new lymph vessels) are vascular endothelial growth factors-C and -D (VEGF-C/D). Here we characterize a model of lymphangiogenesis in which the tail of lizards is regenerated without becoming oedematous. Three weeks after the tail is shed (autotomy), there are a small number of large diameter lymphatic vessels in the regenerated tail. Thereafter, the number increases and the diameter decreases. A functional lymphatic network, as determined by lymphoscintigraphy, is established 6 wk after autotomy. The new network differs morphologically and functionally from that in original tails. This lymphatic regeneration is associated with an up-regulation of a reptilian homologue of the VEGF-C/D protein family (rVEGF-C/D), as determined by Western blot analysis using a human reactive VEGF-C polyclonal antibody. Regenerating lizard tails are potentially useful models for studying the molecular basis of lymphangiogenesis with a view to developing possible treatments for human lymphoedema.


Assuntos
Lagartos/fisiologia , Sistema Linfático/fisiologia , Modelos Animais , Regeneração , Animais , Western Blotting , Fatores de Crescimento Endotelial/análise , Peptídeos e Proteínas de Sinalização Intercelular/análise , Cinética , Lagartos/anatomia & histologia , Sistema Linfático/anatomia & histologia , Linfocinas/análise , Cauda , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
11.
Compr Physiol ; 6(1): 363-422, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26756637

RESUMO

Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Animais , Ecossistema , Humanos , Proteínas Associadas a Surfactantes Pulmonares/genética
12.
Reprod Fertil Dev ; 15(1-2): 55-73, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12729504

RESUMO

Pulmonary surfactant is a complex mixture of phospholipids (PLs), neutral lipids and proteins that lines the inner surface of the lung. Here it modulates surface tension, thereby increasing lung compliance and preventing the transudation of fluid. In humans, pulmonary surfactant is comprised of approximately 80% PLs, 12% neutral lipids and 8% protein. In most eutherian (i.e. placental) mammals, cholesterol (Chol) comprises approximately 8-10% by weight or 14-20 mol% of both alveolar and lamellar body surfactant. It is regarded as an integral component of pulmonary surfactant, yet few studies have concentrated on its function or control. The lipid composition is highly conserved within the vertebrates, except that surfactant of teleost fish is dominated by cholesterol, whereas tetrapod pulmonary surfactant contains a high proportion of disaturated phospholipids (DSPs). The primitive Australian dipnoan lungfish Neoceratodus forsterii demonstrates a 'fish-type' surfactant profile, whereas the other derived dipnoans demonstrate a surfactant profile similar to that of tetrapods. Homology of the surfactant proteins within the vertebrates points to a single evolutionary origin for the system and indicates that fish surfactant is a 'protosurfactant'. Among the terrestrial tetrapods, the relative proportions of DSPs and cholesterol vary in response to lung structure, habitat and body temperature (Tb), but not in relation to phylogeny. The cholesterol content of surfactant is elevated in species with simple saccular lungs or in aquatic species or in species with low Tb. The DSP content is highest in complex lungs, particularly of aquatic species or species with high Tb. Cholesterol is controlled separately from the PL component in surfactant. For example, in heterothermic mammals (i.e. mammals that vary their body temperature), the relative amount of cholesterol increases in cold animals. The rapid changes in the Chol to PL ratio in response to various physiological stimuli suggest that these two components have different turnover rates and may be packaged and processed differently. In mammals, the pulmonary surfactant system develops towards the end of gestation and is characterized by an increase in the saturation of PLs in lung washings and the appearance of surfactant proteins in amniotic fluid. In general, the pattern of surfactant development is highly conserved among the amniotes. This conservation of process is demonstrated by an increase in the amount and saturation of the surfactant PLs in the final stages (>75%) of development. Although the ratios of surfactant components (Chol, PL and DSP) are remarkably similar at the time of hatching/birth, the relative timing of the maturation of the lipid profiles differs dramatically between species. The uniformity of composition between species, despite differences in lung morphology, birthing strategy and relationship to each other, implies that the ratios are critical for the onset of pulmonary ventilation. The differences in the timing, on the other hand, appear to relate primarily to birthing strategy and the onset of air breathing. As the amount of cholesterol relative to the phospholipids is highly elevated in immature lungs, the pattern of cholesterol during development and evolution represents an example of ontogeny recapitulating phylogeny. The fact that cholesterol is an important component of respiratory structures that are primitive, when they are not in use or developing in an embryo, demonstrates that this substance has important and exciting roles in surfactant. These roles still remain to be explored.


Assuntos
Evolução Biológica , Colesterol , Filogenia , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Vertebrados/crescimento & desenvolvimento , Animais , Colesterol/análise , Colesterol/fisiologia , Desenvolvimento Embrionário , Humanos , Fosfolipídeos/fisiologia , Temperatura , Vertebrados/embriologia
13.
Physiol Biochem Zool ; 76(3): 281-95, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12905114

RESUMO

Pulmonary surfactant is a mixture of lipids and proteins that is secreted by alveolar Type II cells. It reduces alveolar surface tension and hence the work of breathing. Despite the tremendous diversity of lung structures amongst the vertebrates, the composition of surfactant is highly conserved. Conserved elements of the surfactant system amongst distantly related species are likely to be crucial factors for successful lung development. Understanding the mechanisms by which the surfactant system becomes operational in animals with dramatically different birthing strategies and in distantly related species will provide important information about the role of the surfactant system in the commencement of air breathing and the processes regulating surfactant maturation and secretion. In mammals, the embryonic maturation of the surfactant system is controlled by a host of factors, including glucocorticoids, thyroid hormones, and autonomic neurotransmitters. Here we review the mechanisms controlling the maturation of surfactant production, including birthing strategy, phylogeny, lung structure, and posthatching environment. Using four species of egg-laying amniote (chicken, dragon lizard, sea turtle, and crocodile) previously described in detail and the large amount of information available for mammals, we examine the hypothesis that the control of surfactant production is dependent on glucocorticoids (dexamethasone [Dex]), thyroid hormones (T3), and autonomic neurotransmitters (epinephrine and carbachol). We also examine whether the overall intrinsic pattern of the control of surfactant maturation is conserved throughout the vertebrate radiation and then how the environment (extrinsic factors) may account for the observed differences in the patterns of development. We also discuss the utility of a coculture system of embryonic Type II cells and fibroblasts to determine the evolutionary pattern behind the control of surfactant and to demonstrate that the surfactant system matures under multihormonal control. We demonstrate that Dex and T3 are stimulators of surfactant production during embryonic development, but they lose their efficacy closer to hatching or birth. Epinephrine stimulates surfactant secretion beyond 75% of development and also after hatching or birth. Carbachol stimulates surfactant secretion in the bearded dragon and saltwater crocodile but not in the sea turtle, chicken, or mammals. It is likely that the differences in control of surfactant development are likely to be primarily related to metabolic activity and the duration of incubation (i.e., the "speed" of development). Moreover, the hormones examined appear important in promoting development and therefore appear conserved within the amniotes. However, the autonomic neurotransmitters induced different responses in different species. Hence, some factors are crucial for the proper maturation of the surfactant system, whereas others vary throughout evolution without being detrimental to the overall function of the system.


Assuntos
Evolução Biológica , Aves/metabolismo , Mamíferos/metabolismo , Surfactantes Pulmonares/metabolismo , Répteis/metabolismo , Respiração , Animais , Aves/embriologia , Carbacol/farmacologia , Agonistas Colinérgicos/farmacologia , Dexametasona/farmacologia , Epinefrina/farmacologia , Mamíferos/embriologia , Fosfolipídeos/metabolismo , Répteis/embriologia , Comportamento Sexual Animal , Hormônios Tireóideos/metabolismo
14.
Physiol Biochem Zool ; 75(3): 260-72, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12177829

RESUMO

The antioxidant enzyme (AOE) system protects the lung from oxidative damage. The pulmonary surfactant (PS) system lowers the interfacial pressure within the lung, improving lung compliance and aiding lung clearance. In mammals, the AOE and PS systems develop in tandem during the final 10%-20% of gestation. Here, we investigated the development of these systems in the viviparous skink, Tiliqua rugosa. The content of total phospholipid (PL), disaturated phospholipid (DSP), and cholesterol (Chol) increased in lung washings from foetal lizards with advancing gestational age. Similarly, the relative saturation of the PLs increased throughout gestation, with mid-stage 40 foetuses having a DSP/PL equivalent to newborns and adults. Maternal lizards had significantly less total PL, DSP, and Chol than nongravid and newborn lizards; however, the relative composition did not differ from nongravid animals. This presumably results from compression of the lungs under the bulk of the developing foetus. The Chol/PL and Chol/DSP ratios declined early in development such that mid-stage 40 embryos had comparable ratios to both newborns and adults. Thus, it appears that the PS system matures in a similar manner in skinks and in mammals. However, the composition of surfactant is complete some weeks before parturition, probably to enable improved survivorship of the precocial young in the event of premature birth. Unlike the surfactant lipids, the AOEs, catalase, superoxide dismutase, and glutathione peroxidase did not differ appreciably throughout gestation. It appears therefore that like the surfactant lipids the AOE system is in readiness for air breathing throughout the latter stages of gestation, possibly in preparation for premature birth. Unlike mammals, the PS and AOE systems develop independently from one another.


Assuntos
Antioxidantes/metabolismo , Lagartos/crescimento & desenvolvimento , Lagartos/metabolismo , Pulmão/enzimologia , Surfactantes Pulmonares/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Ativação Enzimática , Feminino , Idade Gestacional , Lipídeos/análise , Pulmão/metabolismo , Gravidez , Surfactantes Pulmonares/química
15.
Physiol Biochem Zool ; 77(5): 732-49, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15547792

RESUMO

Several times throughout their radiation fish have evolved either lungs or swim bladders as gas-holding structures. Lungs and swim bladders have different ontogenetic origins and can be used either for buoyancy or as an accessory respiratory organ. Therefore, the presence of air-filled bladders or lungs in different groups of fishes is an example of convergent evolution. We propose that air breathing could not occur without the presence of a surfactant system and suggest that this system may have originated in epithelial cells lining the pharynx. Here we present new data on the surfactant system in swim bladders of three teleost fish (the air-breathing pirarucu Arapaima gigas and tarpon Megalops cyprinoides and the non-air-breathing New Zealand snapper Pagrus auratus). We determined the presence of surfactant using biochemical, biophysical, and morphological analyses and determined homology using immunohistochemical analysis of the surfactant proteins (SPs). We relate the presence and structure of the surfactant system to those previously described in the swim bladders of another teleost, the goldfish, and those of the air-breathing organs of the other members of the Osteichthyes, the more primitive air-breathing Actinopterygii and the Sarcopterygii. Snapper and tarpon swim bladders are lined with squamous and cuboidal epithelial cells, respectively, containing membrane-bound lamellar bodies. Phosphatidylcholine dominates the phospholipid (PL) profile of lavage material from all fish analyzed to date. The presence of the characteristic surfactant lipids in pirarucu and tarpon, lamellar bodies in tarpon and snapper, SP-B in tarpon and pirarucu lavage, and SPs (A, B, and D) in swim bladder tissue of the tarpon provide strong evidence that the surfactant system of teleosts is homologous with that of other fish and of tetrapods. This study is the first demonstration of the presence of SP-D in the air-breathing organs of nonmammalian species and SP-B in actinopterygian fishes. The extremely high cholesterol/disaturated PL and cholesterol/PL ratios of surfactant extracted from tarpon and pirarucu bladders and the poor surface activity of tarpon surfactant are characteristics of the surfactant system in other fishes. Despite the paraphyletic phylogeny of the Osteichthyes, their surfactant is uniform in composition and may represent the vertebrate protosurfactant.


Assuntos
Sacos Aéreos/metabolismo , Evolução Biológica , Peixes/metabolismo , Surfactantes Pulmonares/metabolismo , Mucosa Respiratória/metabolismo , Sacos Aéreos/ultraestrutura , Animais , Peixes/anatomia & histologia , Imuno-Histoquímica , Pulmão/anatomia & histologia , Pulmão/metabolismo , Microscopia Eletrônica , Fosfatidilcolinas/metabolismo , Especificidade da Espécie
16.
Ecol Evol ; 4(11): 2103-14, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25360252

RESUMO

The koala (Phascolarctos cinereus) occurs in the eucalypt forests of eastern and southern Australia and is currently threatened by habitat fragmentation, climate change, sexually transmitted diseases, and low genetic variability throughout most of its range. Using data collected during the Great Koala Count (a 1-day citizen science project in the state of South Australia), we developed generalized linear mixed-effects models to predict habitat suitability across South Australia accounting for potential errors associated with the dataset. We derived spatial environmental predictors for vegetation (based on dominant species of Eucalyptus or other vegetation), topographic water features, rain, elevation, and temperature range. We also included predictors accounting for human disturbance based on transport infrastructure (sealed and unsealed roads). We generated random pseudo-absences to account for the high prevalence bias typical of citizen-collected data. We accounted for biased sampling effort along sealed and unsealed roads by including an offset for distance to transport infrastructures. The model with the highest statistical support (wAIC c ∼ 1) included all variables except rain, which was highly correlated with elevation. The same model also explained the highest deviance (61.6%), resulted in high R (2)(m) (76.4) and R (2)(c) (81.0), and had a good performance according to Cohen's κ (0.46). Cross-validation error was low (∼ 0.1). Temperature range, elevation, and rain were the best predictors of koala occurrence. Our models predict high habitat suitability in Kangaroo Island, along the Mount Lofty Ranges, and at the tips of the Eyre, Yorke and Fleurieu Peninsulas. In the highest-density region (5576 km(2)) of the Adelaide-Mount Lofty Ranges, a density-suitability relationship predicts a population of 113,704 (95% confidence interval: 27,685-199,723; average density = 5.0-35.8 km(-2)). We demonstrate the power of citizen science data for predicting species' distributions provided that the statistical approaches applied account for some uncertainties and potential biases. A future improvement to citizen science surveys to provide better data on search effort is that smartphone apps could be activated at the start of the search. The results of our models provide preliminary ranges of habitat suitability and population size for a species for which previous data have been difficult or impossible to gather otherwise.

17.
Respir Physiol Neurobiol ; 178(1): 129-45, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21642020

RESUMO

Pulmonary surfactant fulfils diverse functions at the lung air-liquid interface of all air-breathing vertebrates. Neurohormonal regulation of surfactant synthesis and secretion is highly conserved among non-mammalian amniotes. Although the pattern of surfactant lipid maturation is similar among species, the onset and completion differ dramatically. These differences are apparently not determined by phylogeny, but may relate to the timing of development of relative hypoxia as an embryo develops, which is related to birthing strategy. We have proposed that hypoxia is an evolutionary drive for differential surfactant development among species. In mammalian and non-mammalian models, hypoxia induces fetal growth restriction. Depending on the timing of the insult, this may be associated with an acceleration or deceleration of surfactant development. The hypoxic effect may be mediated via hormonal and growth factors, such as glucocorticoids and VEGF. However, the multifactorial nature of mammalian growth restriction models complicates the mechanistic interpretations. Hence, less complex oviparous animal models are required, in which hypoxia can be isolated from maternal influences.


Assuntos
Hipóxia/embriologia , Hipóxia/metabolismo , Oxigênio/metabolismo , Sistema Respiratório/embriologia , Sistema Respiratório/metabolismo , Animais , Humanos , Surfactantes Pulmonares/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-20483290

RESUMO

The pulmonary surfactant system of heterothermic mammals must be capable of dealing with the effect of low body temperatures on the physical state of the lipid components. We have shown previously that there is a modest increase in surfactant cholesterol during periods of torpor, however these changes do not fully explain the capacity of surfactant to function under the wide range of physical conditions imposed by torpor. Here we examine indirectly the role of surfactant protein C (SP-C) in adapting to variable body temperatures by testing for the presence of positive (adaptive) selection during evolutionary transitions between heterothermy and homeothermy. We sequenced SP-C from genomic DNA of 32 mammalian species from groups of closely related heterothermic and homeothermic species (contrasts). We used phylogenetic analysis by maximum likelihood estimates of rates of non-synonymous to synonymous substitutions and fully Bayesian inference of these sequences to determine whether the mode of body temperature regulation exerts a selection pressure driving the molecular adaptation of SP-C. The protein sequence of SP-C is highly conserved with synonymous or highly conservative amino acid substitutions being predominant. The evolution of SP-C among mammals is characterised by high codon usage bias and high rates of transition/transversion. The only contrast to show evidence of positive selection was that of the bears (Ursus americanus and U. maritimus). The significance of this result is unclear. We show that SP-C is under strong evolutionary constraints, driven by purifying selection, presumably to maintain protein function despite variation in the mode of body temperature regulation.

19.
J Mol Evol ; 65(1): 12-22, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17568982

RESUMO

Maximum-likelihood models of codon and amino acid substitution were used to analyze the lung-specific surfactant protein C (SP-C) from terrestrial, semi-aquatic, and diving mammals to identify lineages and amino acid sites under positive selection. Site models used the nonsynonymous/synonymous rate ratio (omega) as an indicator of selection pressure. Mechanistic models used physicochemical distances between amino acid substitutions to specify nonsynonymous substitution rates. Site models strongly identified positive selection at different sites in the polar N-terminal extramembrane domain of SP-C in the three diving lineages: site 2 in the cetaceans (whales and dolphins), sites 7, 9, and 10 in the pinnipeds (seals and sea lions), and sites 2, 9, and 10 in the sirenians (dugongs and manatees). The only semi-aquatic contrast to indicate positive selection at site 10 was that including the polar bear, which had the largest body mass of the semi-aquatic species. Analysis of the biophysical properties that were influential in determining the amino acid substitutions showed that isoelectric point, chemical composition of the side chain, polarity, and hydrophobicity were the crucial determinants. Amino acid substitutions at these sites may lead to stronger binding of the N-terminal domain to the surfactant phospholipid film and to increased adsorption of the protein to the air-liquid interface. Both properties are advantageous for the repeated collapse and reinflation of the lung upon diving and resurfacing and may reflect adaptations to the high hydrostatic pressures experienced during diving.


Assuntos
Caniformia/genética , Cetáceos/genética , Proteína C Associada a Surfactante Pulmonar/genética , Seleção Genética , Sirênios/genética , Sequência de Aminoácidos , Animais , Biologia Marinha , Modelos Genéticos , Filogenia , Estrutura Terciária de Proteína/genética , Proteína C Associada a Surfactante Pulmonar/química , Surfactantes Pulmonares/química , Alinhamento de Sequência , Ursidae/genética
20.
Anat Rec (Hoboken) ; 290(1): 108-14, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17441203

RESUMO

Rational treatment of lymphoedema may be improved in the future with a better understanding of the physiological processes involved in the regeneration of new lymphatic vessels (lymphangiogenesis). Many lizard species undergo tail autotomy as a predator escape response and subsequently regenerate nonlymphoedematous tails. Such species may offer novel models for examining lymphangiogenesis. In this lymphoscintigraphic evaluation, three radioactive tracers were employed, (99m)Tc-antimony trisulphide colloid (approximately 10 nm diameter), (99m)Tc-tin fluoride colloid (approximately 2,000 nm; (99m)Tc-TFC), and (99m)Tc-diethylenetriaminepentaacetic acid (soluble; (99m)Tc-DTPA), to examine lymphatic function in regenerating tails of the Australian marbled gecko, Christinus marmoratus. Rate of local clearance and velocity of migration were determined in geckos with original tails and at 6, 9, 12, and >24 weeks after autotomy. In original-tailed geckos, the smaller radiocolloid was cleared to a greater extent and had a faster lymph velocity than in geckos with regenerated tails. The same parameters measured for larger particles were greater in early regeneration than later. (99m)Tc-TFC did not migrate from the injection site in fully regenerated and original gecko tails, which indicates that larger particles are increasingly impeded as tail regeneration progresses. Soluble (99m)Tc-DTPA diffused from the injection site extremely rapidly via venous capillaries in all tails, confirming that the slower clearance of the colloids is solely via the lymphatics. Differences in clearance and lymph velocity between differently sized colloids throughout tail regeneration may be influenced by changes in surrounding tissue structure density and the lymphatic vessel porosity.


Assuntos
Lagartos/fisiologia , Sistema Linfático/fisiologia , Regeneração/fisiologia , Cauda/fisiologia , Animais , Permeabilidade da Membrana Celular/fisiologia , Coloides , Junções Intercelulares/fisiologia , Sistema Linfático/citologia , Vasos Linfáticos/citologia , Vasos Linfáticos/fisiologia , Traçadores Radioativos , Cintilografia/métodos , Cauda/citologia , Tecnécio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA