Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Oecologia ; 202(2): 353-368, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37291257

RESUMO

Research from terrestrial communities shows that diminished predation risk is a principal driver of heterospecific grouping behavior, with foraging ecology predicting the roles that species play in groups, as more vulnerable foragers preferentially join more vigilant ones from whom they can benefit. Meanwhile, field studies examining the adaptive significance of heterospecific shoaling among marine fish have focused disproportionately on feeding advantages such as scrounging or prey-flushing. Juvenile bonefish (Albula vulpes) occur almost exclusively among mojarras (Eucinostomus spp.) and even elect to join them over conspecifics, suggesting they benefit from doing so. We evaluated the roles of risk-related and food-related factors in motivating this pattern of affiliation, estimating: (1) the relative levels of risk associated with each species' search and prey capture activities, via behavioral vulnerability traits discerned from in situ video of heterospecific shoals, and (2) resource use redundancy, using stable isotopes (δ13C, δ15N, and δ34S) to quantify niche overlap. Across four distinct metrics, bonefish behaviors implied a markedly greater level of risk than those of mojarras, typified by higher activity levels and a reduced capacity for overt vigilance; consistent with expectations if their association conformed to patterns of joining observed in terrestrial habitats. Resource use overlap inferred from stable isotopes was low, indicating that the two species partitioned resources and making it unlikely that bonefish derived substantive food-related benefits. Collectively, these findings suggest that the attraction of juvenile bonefish to mojarras is motivated primarily by antipredator advantages, which may include the exploitation of risk-related social cues.


Assuntos
Ecossistema , Peixes , Animais , Comportamento Predatório , Isótopos , Ecologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37468090

RESUMO

The biological consequences of catch-and-release angling have been studied for decades, yet little is known about the compounding effects of repeated recreational fisheries recaptures on the physiology and behaviour of angled fish. Using heart rate biologgers and behavioural assays, this study investigated the physiological and behavioural consequences of multiple simulated angling events (i.e., repeated stressors) on female steelhead (Oncorhynchus mykiss), under current (6 °C) and future (11 °C) water temperature scenarios. While steelhead in the warmer water temperature scenario demonstrated alterations in cardiac function (e.g., increases in maximum heart rate and scope of heart rate) and evidence of behavioural impairments (e.g., decreases in chase activity and landing time) over the course of two simulated angling events, cold water treated fish had negligible change. Fish subjected to two simulated angling events under warm water temperature conditions tended to demonstrate an increase in recovery time and scope for heart rate, and a decrease in resting heart rate. A second experiment was conducted to test for sex-specific differences in the heart rate response of steelhead subjected to an increase in water temperature. Females demonstrated a higher scope for heart rate when compared to males during the event and during recovery. More work is needed to better understand the interaction between multiple angling events and recovery from these events at various water temperatures, and the biological basis for sex-specific differences in cardiac function and response to challenges. This study contributes to a growing body of evidence on the effects of repeated stressors on wild fish.


Assuntos
Oncorhynchus mykiss , Masculino , Feminino , Animais , Temperatura , Água , Pesqueiros , Metabolismo Energético
3.
Ecol Appl ; 32(5): e2584, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35333436

RESUMO

Interspecific interactions can play an essential role in shaping wildlife populations and communities. To date, assessments of interspecific interactions, and more specifically predator-prey dynamics, in aquatic systems over broad spatial and temporal scales (i.e., hundreds of kilometers and multiple years) are rare due to constraints on our abilities to measure effectively at those scales. We applied new methods to identify space-use overlap and potential predation risk to Atlantic tarpon (Megalops atlanticus) and permit (Trachinotus falcatus) from two known predators, great hammerhead (Sphyrna mokarran) and bull (Carcharhinus leucas) sharks, over a 3-year period using acoustic telemetry in the coastal region of the Florida Keys (USA). By examining spatiotemporal overlap, as well as the timing and order of arrival at specific locations compared to random chance, we show that potential predation risk from great hammerhead and bull sharks to Atlantic tarpon and permit are heterogeneous across the Florida Keys. Additionally, we find that predator encounter rates with these game fishes are elevated at specific locations and times, including a prespawning aggregation site in the case of Atlantic tarpon. Further, using machine learning algorithms, we identify environmental variability in overlap between predators and their potential prey, including location, habitat, time of year, lunar cycle, depth, and water temperature. These predator-prey landscapes provide insights into fundamental ecosystem function and biological conservation, especially in the context of emerging fishery-related depredation issues in coastal marine ecosystems.


Assuntos
Comportamento Predatório , Tubarões , Animais , Ecossistema , Peixes , Florida
4.
J Fish Biol ; 101(1): 4-12, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35439327

RESUMO

There is growing evidence that bioenergetics can explain relationships between environmental conditions and fish behaviour, distribution and fitness. Fish energetic needs increase predictably with water temperature, but metabolic performance (i.e., aerobic scope) exhibits varied relationships, and there is debate about its role in shaping fish ecology. Here we present an energetics-performance framework, which posits that ecological context determines whether energy expenditure or metabolic performance influence fish behaviour and fitness. From this framework, we present testable predictions about how temperature-driven variability in energetic demands and metabolic performance interact with ecological conditions to influence fish behaviour, distribution and fitness. Specifically, factors such as prey availability and the spatial distributions of prey and predators may alter fish temperature selection relative to metabolic and energetic optima. Furthermore, metabolic flexibility is a key determinant of how fish will respond to changing conditions, such as those predicted with climate change. With few exceptions, these predictions have rarely been tested in the wild due partly to difficulties in remotely measuring aspects of fish energetics. However, with recent advances in technology and measurement techniques, we now have a better capacity to measure bioenergetics parameters in the wild. Testing these predictions will provide a more mechanistic understanding of how ecological factors affect fish fitness and population dynamics, advancing our knowledge of how species and ecosystems will respond to rapidly changing environments.


Assuntos
Ecossistema , Peixes , Animais , Mudança Climática , Metabolismo Energético , Peixes/metabolismo , Temperatura
5.
J Fish Biol ; 101(4): 756-779, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35788929

RESUMO

Movement of fishes in the aquatic realm is fundamental to their ecology and survival. Movement can be driven by a variety of biological, physiological and environmental factors occurring across all spatial and temporal scales. The intrinsic capacity of movement to impact fish individually (e.g., foraging) with potential knock-on effects throughout the ecosystem (e.g., food web dynamics) has garnered considerable interest in the field of movement ecology. The advancement of technology in recent decades, in combination with ever-growing threats to freshwater and marine systems, has further spurred empirical research and theoretical considerations. Given the rapid expansion within the field of movement ecology and its significant role in informing management and conservation efforts, a contemporary and multidisciplinary review about the various components influencing movement is outstanding. Using an established conceptual framework for movement ecology as a guide (i.e., Nathan et al., 2008: 19052), we synthesized the environmental and individual factors that affect the movement of fishes. Specifically, internal (e.g., energy acquisition, endocrinology, and homeostasis) and external (biotic and abiotic) environmental elements are discussed, as well as the different processes that influence individual-level (or population) decisions, such as navigation cues, motion capacity, propagation characteristics and group behaviours. In addition to environmental drivers and individual movement factors, we also explored how associated strategies help survival by optimizing physiological and other biological states. Next, we identified how movement ecology is increasingly being incorporated into management and conservation by highlighting the inherent benefits that spatio-temporal fish behaviour imbues into policy, regulatory, and remediation planning. Finally, we considered the future of movement ecology by evaluating ongoing technological innovations and both the challenges and opportunities that these advancements create for scientists and managers. As aquatic ecosystems continue to face alarming climate (and other human-driven) issues that impact animal movements, the comprehensive and multidisciplinary assessment of movement ecology will be instrumental in developing plans to guide research and promote sustainability measures for aquatic resources.


Assuntos
Ecologia , Ecossistema , Animais , Humanos , Peixes/fisiologia , Cadeia Alimentar , Água Doce , Conservação dos Recursos Naturais
6.
Oecologia ; 194(1-2): 283-298, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33006076

RESUMO

Information on ecological systems often comes from diverse sources with varied levels of complexity, bias, and uncertainty. Accordingly, analytical techniques continue to evolve that address these challenges to reveal the characteristics of ecological systems and inform conservation actions. We applied multiple statistical learning algorithms (i.e., machine learning) with a range of information sources including fish tracking data, environmental data, and visual surveys to identify potential spawning aggregation sites for a marine fish species, permit (Trachinotus falcatus), in the Florida Keys. Recognizing the potential complementarity and some level of uncertainty in each information source, we applied supervised (classic and conditional random forests; RF) and unsupervised (fuzzy k-means; FKM) algorithms. The two RF models had similar predictive performance, but generated different predictor variable importance structures and spawning site predictions. Unsupervised clustering using FKM identified unique site groupings that were similar to the likely spawning sites identified with RF. The conservation of aggregate spawning fish species depends heavily on the protection of key spawning sites; many of these potential sites were identified here for permit in the Florida Keys, which consisted of relatively deep-water natural and artificial reefs with high mean permit residency periods. The application of multiple machine learning algorithms enabled the integration of diverse information sources to develop models of an ecological system. Faced with increasingly complex and diverse data sources, ecologists, and conservation practitioners should find increasing value in machine learning algorithms, which we discuss here and provide resources to increase accessibility.


Assuntos
Ecossistema , Aprendizado de Máquina , Algoritmos , Animais , Florida , Reprodução
7.
J Fish Biol ; 97(1): 4-15, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32243570

RESUMO

Blood sampling through the caudal vasculature is a widely used technique in fish biology for investigating organismal health and physiology. In live fishes, it can provide a quick, easy and relatively non-invasive method for obtaining a blood sample (cf. cannulation and cardiac puncture). Here, a general set of recommendations are provided for optimizing the blood sampling protocol that reflects best practices in animal welfare and sample integrity. This includes selecting appropriate use of anaesthetics for blood sampling as well as restraint techniques for situations where sedation is not used. In addition, ideal sampling environments where the fish can freely ventilate and strategies for minimizing handling time are discussed. This study summarizes the techniques used for extracting blood from the caudal vasculature in live fishes, highlighting the phlebotomy itself, the timing of sampling events and acceptable blood sample volumes. This study further discuss considerations for selecting appropriate physiological metrics when sampling in the caudal region and the potential benefits that this technique provides with respect to long-term biological assessments. Although general guidelines for blood sampling are provided here, it should be recognized that contextual considerations (e.g., taxonomic diversity, legal matters, environmental constraints) may influence the approach to blood sampling. Overall, it can be concluded that when done properly, blood sampling live fishes through the caudal vasculature is quick, efficient and minimally invasive, thus promoting conditions where live release of focal animals is possible.


Assuntos
Coleta de Amostras Sanguíneas/veterinária , Peixes , Flebotomia/veterinária , Bem-Estar do Animal , Animais , Coleta de Amostras Sanguíneas/métodos , Flebotomia/métodos
8.
J Fish Biol ; 96(2): 469-479, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31823365

RESUMO

We used acoustic telemetry to quantify permit Trachinotus falcatus habitat use and connectivity in proximity to the Florida Keys, USA, and assessed these patterns relative to current habitat and fisheries management practices. From March 2017 to June 2018, 45 permit tagged within 16 km of the lower Florida Keys were detected at stationary acoustic receivers throughout the south Florida region, the majority of which remained within the Special Permit Zone, where more extensive fisheries harvest regulations are implemented. There was a high level of connectivity between nearshore flats (i.e., <3 m water depth) and the Florida reef tract (FRT; 15-40 m water depth), with 75% of individuals detected in both habitats. These locations probably function primarily as foraging and spawning habitats, respectively. Permit occupancy on the FRT peaked during the months of March-September, with the highest number of individuals occurring there in April and May. Specific sites on the FRT were identified as potentially important spawning locations, as they attracted a high proportion of individuals that exhibited frequent visits with high residency durations. There were also significant positive relationships between seasonal habitat-use metrics on the FRT and an empirical permit gonadosomatic index. Large aggregations of permit at spawning sites on the FRT are potentially vulnerable to the effects of fishing (including predation during catch and release) at a critical point in their life cycle. These data on permit space use and movement, coupled with knowledge of stressors on their ecology, provide insights for implementing science-based strategic management plans.


Assuntos
Ecossistema , Pesqueiros/organização & administração , Peixes/classificação , Peixes/fisiologia , Estações do Ano , Animais , Conservação dos Recursos Naturais , Florida , Comportamento Predatório
9.
J Fish Biol ; 95(2): 562-574, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31119738

RESUMO

Bonefishes Albula spp. are important components of subsistence fisheries and lucrative sport fishing industries throughout their circumtropical distribution. In Oceania, however, Albula spp. have historically been overexploited and there is a growing need to balance the demands of competing fishing sectors, making the description of their life history a regional priority. To this aim, we collected biological samples from Albula spp. of Anaa atoll, French Polynesia, to identify the species that compose the stock and estimate their life-history parameters including age, growth, reproduction and natural mortality. Our results indicate that Albula glossodonta is the species of bonefish present, with a maximum age that is below the, 20 year longevity of the genus (8 years in males and 10 years in females). Differential growth patterns existed between the two sexes (L∞ = 58, 78 cm fork length (LF ) and K = 0.38, 0.21 for males and females, respectively). Males attained sexual maturity at 43 cm LF (c. 3 years) whereas females matured at 48 cm LF (c. 4 years) and oocyte production was significantly related to body mass, with a maximum batch fecundity of 1,133,767 oocytes in a 4406 g (70 cm LF ) female. The gonado-somatic index of harvested fishes indicated that the spawning season extends from March through September. Based on the observation of a, 20 year bonefish at the proximate Tetiaroa Atoll and several empirical models, estimates of natural mortality ranged from 0.21 to 0.68; however, an estimate of 0.21 was deemed most appropriate. This information facilitated the resurgence of a Rahui (temporary fishing closure) and community-based management to protect A. glossodonta during a critical portion of their spawning season and in this context our results provide an important demographic baseline in evaluating the recovery of this fishery.


Assuntos
Peixes/fisiologia , Características de História de Vida , Animais , Feminino , Fertilidade , Pesqueiros , Longevidade , Masculino , Oceania , Oócitos , Reprodução , Estações do Ano
10.
J Fish Biol ; 94(6): 845-856, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30779138

RESUMO

Recreational fisheries that use rod and reel (i.e., angling) operate around the globe in diverse freshwater and marine habitats, targeting many different gamefish species and engaging at least 220 million participants. The motivations for fishing vary extensively; whether anglers engage in catch-and-release or are harvest-oriented, there is strong potential for recreational fisheries to be conducted in a manner that is both responsible and sustainable. There are many examples of recreational fisheries that are well-managed where anglers, the angling industry and managers engage in responsible behaviours that both contribute to long-term sustainability of fish populations and the sector. Yet, recreational fisheries do not operate in a vacuum; fish populations face threats and stressors including harvest from other sectors as well as environmental change, a defining characteristic of the Anthropocene. We argue that the future of recreational fisheries and indeed many wild fish populations and aquatic ecosystems depends on having responsible and sustainable (R&S) recreational fisheries whilst, where possible, addressing, or at least lobbying for increased awareness about the threats to recreational fisheries emanating from outside the sector (e.g., climate change). Here, we first consider how the concepts of R&S intersect in the recreational fishing sector in an increasingly complex socio-cultural context. Next, we explore the role of the angler, angling industry and decision-makers in achieving R&S fisheries. We extend this idea further by considering the consequences of a future without recreational fisheries (either because of failures related to R&S) and explore a pertinent case study situated in Uttarakahand, India. Unlike other fisheries sectors where the number of participants is relatively small, recreational angling participants are numerous and widespread, such that if their actions are responsible, they have the potential to be a key voice for conservation and serve as a major force for good in the Anthropocene. What remains to be seen is whether this will be achieved, or if failure will occur to the point that recreational fisheries face increasing pressure to cease, as a result of external environmental threats, the environmental effects of recreational fishing and emerging ethical concerns about the welfare of angled fish.


Assuntos
Pesqueiros/ética , Avaliação de Programas e Projetos de Saúde , Recreação , Animais , Mudança Climática , Conservação dos Recursos Naturais , Tomada de Decisões , Ecossistema , Água Doce , Índia , Alimentos Marinhos
11.
J Fish Biol ; 93(2): 207-214, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29931782

RESUMO

Accelerometry is growing in popularity for remotely measuring fish swimming metrics, but appropriate sampling frequencies for accurately measuring these metrics are not well studied. This research examined the influence of sampling frequency (1-25 Hz) with tri-axial accelerometer biologgers on estimates of overall dynamic body acceleration (ODBA), tail-beat frequency, swimming speed and metabolic rate of bonefish Albula vulpes in a swim-tunnel respirometer and free-swimming in a wetland mesocosm. In the swim tunnel, sampling frequencies of ≥ 5 Hz were sufficient to establish strong relationships between ODBA, swimming speed and metabolic rate. However, in free-swimming bonefish, estimates of metabolic rate were more variable below 10 Hz. Sampling frequencies should be at least twice the maximum tail-beat frequency to estimate this metric effectively, which is generally higher than those required to estimate ODBA, swimming speed and metabolic rate. While optimal sampling frequency probably varies among species due to tail-beat frequency and swimming style, this study provides a reference point with a medium body-sized sub-carangiform teleost fish, enabling researchers to measure these metrics effectively and maximize study duration.


Assuntos
Aceleração , Acelerometria/normas , Peixes/fisiologia , Natação/fisiologia , Animais
12.
J Environ Manage ; 219: 252-259, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29751256

RESUMO

Given the well-documented impacts of angler behavior on the biological fitness of angled and released fish, optimizing the conservation value of catch-and-release angling hinges on the extent to which anglers are willing to adopt recommended best practices and refrain from harmful ones. One potentially powerful mechanism underlying adoption of best practices is the social pressure anglers can apply to one another to enforce community norms and values. Past work in other domains demonstrates that forms of interpersonal communication-including social sanctioning-can foster context-appropriate social norms and increase cooperative behavior; yet to date, little research has examined these dynamics in the context of species conservation. We conducted in-person and online surveys to explore the role of social sanctioning in the context of an internationally renowned wild steelhead (Oncorhynchus mykiss) fishery in British Columbia, Canada. We investigated how diverse social-psychological and demographic factors influence anglers' past and future sanctioning propensity. Results highlight that perceived capacity to influence the angling practices of others and professed concerns about one's own reputation were strongly predictive of both past and future sanctioning. Furthermore, while anglers reported relatively low-levels of past sanctioning behavior, most anglers simultaneously expressed a strong desire to sanction others in the future. Identifying ways to increase the social desirability and visibility of sanctioning actions could assist resource managers in promoting adoption and maintenance of best practices. More broadly, our findings underscore a significant yet underappreciated role for wildlife users and enthusiasts in cultivating a shared conservation ethic to help ensure biological conservation.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Influência dos Pares , Animais , Colúmbia Britânica , Peixes , Humanos , Inquéritos e Questionários
13.
Oecologia ; 183(3): 689-699, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28093608

RESUMO

Animal behavior and energy expenditure often vary significantly across the landscape, and quantifying energy expenditure over space and time provides mechanistic insight into ecological dynamics. Yet, spatiotemporal variability in energy expenditure has rarely been explored in fully aquatic species such as fish. Our objective was to quantify spatially explicit energy expenditure for a tropical marine teleost fish, bonefish (Albula vulpes), to examine how bonefish energetics vary across landscape features and temporal factors. Using a swim tunnel respirometer, we calibrated acoustic accelerometer transmitters implanted in bonefish to estimate their metabolic rates and energy expenditure, and applied this technology in situ using a fine-scale telemetry system on a heterogeneous reef flat in Puerto Rico. Bonefish energy expenditure varied most among habitats, with significant interactions between habitat and temporal factors (i.e., diel period, tide state, season). The energy expenditure was generally highest in shallow water habitats (i.e., seagrass and reef crest). Variation in activity levels was the main driver of these differences in energy expenditure, which in shallow, nearshore habitats is likely related to foraging. Bonefish moderate energy expenditure across seasonal fluctuations in temperature, by selectively using shallow nearshore habitats at moderate water temperatures that correspond with their scope for activity. Quantifying how animals expend energy in association with environmental and ecological factors can provide important insight into behavioral ecology, with implications for bioenergetics models.


Assuntos
Ecossistema , Peixes , Animais , Comportamento Animal , Metabolismo Energético , Natação
14.
Oecologia ; 183(3): 909-917, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28039527

RESUMO

Despite many positive benefits of ecotourism, increased human encounters with wildlife may have detrimental effects on wild animals. As charismatic megafauna, nesting and foraging sea turtles are increasingly the focus of ecotourism activities. The purpose of our study was to quantify the behavioral responses of immature green turtles (Chelonia mydas) to disturbance by snorkelers, and to investigate whether turtles have individual-level responses to snorkeler disturbance. Using a standardized disturbance stimulus in the field, we recorded turtle behaviors pre- and post-disturbance by snorkelers. Ninety percent of turtles disturbed by snorkeler (n = 192) initiated their flights at distances of ≤3 m. Using principal component analysis, we identified two distinct turtle personality types, 'bold' and 'timid', based upon 145 encounters of 19 individually identified turtles and five disturbance response variables. There was significant intra-individual repeatability in behavioral responses to disturbance, but bolder turtles had more behavioral plasticity and less consistent responses than more timid individuals. Bolder individuals with reduced evasion responses might be at a higher risk of shark predation, while more timid turtles might have greater energetic consequences due to non-lethal predator effects and repeated snorkeler disturbance. Over the longer term, a turtle population with a mix of bold and timid individuals may promote more resilient populations. We recommend that snorkelers maintain >3 m distance from immature green turtles when snorkeling, and that ecotourism activities be temporally and spatially stratified. Further, turtle watching guidelines need to be communicated to both tour operators and independent snorkelers to reduce the disturbance of turtles.


Assuntos
Comportamento Predatório , Tartarugas , Animais , Mergulho , Humanos , Tubarões
15.
Environ Manage ; 60(2): 165-175, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28600638

RESUMO

A new geological epoch, the "Anthropocene", has been defined as the period in which humans have had substantial geological and ecological influence on the planet. A positive future for this epoch can be referred to as the "good Anthropocene" and would involve effective management strategies and changes in human behavior that promote the sustainability and restoration of ecosystems. Recreational fisheries hold significant social, cultural, and economic value and can generate many benefits when managed sustainably and thus be an integral part of a "good Anthropocene". Here, we list ten commandments to facilitate persistence and long-term sustainability of recreational fisheries in the "good Anthropocene". This list includes fostering aquatic stewardship, promoting education, using appropriate capture gear, adopting evidence-based management approaches, promoting the concept of resilience, obtaining and using effort data in management, embracing the ecosystem approach, engaging in multilevel collaboration, enhancing accessibility, and embracing optimism. When used singly, or simultaneously, these ten commandments will contribute to the harmonization of sustainable fish populations and angling practices, to create recreational fisheries' "bright spots".


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Pesqueiros/organização & administração , Recreação , Animais , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/tendências , Comportamento Cooperativo , Ecologia , Pesqueiros/economia , Pesqueiros/normas , Pesqueiros/tendências , Peixes
16.
J Exp Biol ; 219(Pt 16): 2534-44, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27535988

RESUMO

Fish migrations through riverine systems can be energetically demanding, and the presence of fishways to facilitate upstream passage can add an additional energetic cost that may directly affect fitness. Successful fishway passage is a function of the ability of fish to select appropriate paths and swimming strategies that do not exceed their swimming capacity. Triaxial accelerometers were used to estimate the energetic expenditure of adult lake sturgeon (Acipenser fulvescens) swimming through a vertical slot fishway, to determine whether individual behaviour or path selection, resulting in differences in cumulative energy use, explain fishway passage success. Most individuals attempted to pass the fishway (n=30/44; 68%), although successful passage only occurred for a subset of those attempting (n=7/30; 23%). High-speed swimming was rarely observed during upstream passage through fishway basins, and was of short duration. Two turning basins delayed passage, subsequently resulting in a higher energetic cost. The rate at which energy was expended did not differ among successful and unsuccessful individuals, although successful sturgeon exhibited higher costs of transport (42.75 versus 25.85 J kg(-1) m(-1)). Energy expenditure metrics were not predictive of successful fishway passage, leading us to conclude that other endogenous or exogenous factors influence passage success. In a practical application of field measurements of energy expenditure, we demonstrate that fishway passage through a structure designed to facilitate migration does result in an energetic loss for lake sturgeon (3249-16,331 J kg(-1)), equivalent to individuals travelling 5.8-28.2 km in a lentic system.


Assuntos
Envelhecimento/fisiologia , Metabolismo Energético/fisiologia , Peixes/fisiologia , Lagos , Natação/fisiologia , Animais , Intervalos de Confiança , Modelos Lineares , Modelos Teóricos , Quebeque , Fatores de Tempo
17.
Gen Comp Endocrinol ; 214: 1-8, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25745817

RESUMO

Individual variation in the endocrine stress response has been linked to survival and performance in a variety of species. Here, we evaluate the relationship between the endocrine stress response and anti-predator behaviors in wild checkered puffers (Sphoeroides testudineus) captured at Eleuthera Island, Bahamas. The checkered puffer has a unique and easily measurable predator avoidance strategy, which is to inflate or 'puff' to deter potential predators. In this study, we measured baseline and stress-induced circulating glucocorticoid levels, as well as bite force, a performance measure that is relevant to both feeding and predator defence, and 'puff' performance. We found that puff performance and bite force were consistent within individuals, but generally decreased following a standardized stressor. Larger puffers were able to generate a higher bite force, and larger puffers were able to maintain a more robust puff performance following a standardized stressor relative to smaller puffers. In terms of the relationship between the glucocorticoid stress response and performance metrics, we found no relationship between post-stress glucocorticoid levels and either puff performance or bite force. However, we did find that baseline glucocorticoid levels predicted the ability of a puffer to maintain a robust puff response following a repeated stressor, and this relationship was more pronounced in larger individuals. Our work provides a novel example of how baseline glucocorticoids can predict a fitness-related anti-predator behavior.


Assuntos
Força de Mordida , Hidrocortisona/metabolismo , Comportamento Predatório/fisiologia , Estresse Fisiológico/fisiologia , Tetraodontiformes/fisiologia , Animais
18.
Environ Biol Fishes ; 106(2): 117-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36686288

RESUMO

Coastal marine fisheries and the habitats that support them are under extensive and increasing pressures from numerous anthropogenic stressors that occur at multiple spatial and temporal scales and often intersect in unexpected ways. Frequently, the scales at which these fisheries are managed do not match the scales of the stressors, much less the geographic scale of species biology. In general, fishery management is ill prepared to address these stressors, as underscored by the continuing lack of integration of fisheries and habitat management. However, research of these fisheries is increasingly being conducted at spatial and temporal scales that incorporate biology and ecological connectivity of target species, with growing attention to the foundational role of habitat. These efforts are also increasingly engaging stakeholders and rights holders in research, education, and conservation. This multi-method approach is essential for addressing pressing conservation challenges that are common to flats ecosystems. Flats fisheries occur in the shallow, coastal habitat mosaic that supports fish species that are accessible to and desirable to target by recreational fishers. Because these species rely upon coastal habitats, the anthropogenic stressors can be especially intense-habitat alteration (loss and degradation) and water quality declines are being exacerbated by climate change and increasing direct human impacts (e.g., fishing effort, boat traffic, depredation, pollution). The connections necessary for effective flats conservation are of many modes and include ontogenetic habitat connectivity; connections between stressors and impacts to fishes; connections between research and management, such as research informing spawning area protections; and engagement of stakeholders and rights holders in research, education, and management. The articles included in this Special Issue build upon a growing literature that is filling knowledge gaps for flats fishes and their habitats and increasingly providing the evidence to inform resource management. Indeed, numerous articles in this issue propose or summarize direct application of research findings to management with a focus on current and future conservation challenges. As with many other fisheries, a revised approach to management and conservation is needed in the Anthropocene.

19.
Physiol Biochem Zool ; 96(1): 17-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36626841

RESUMO

AbstractLocomotion is a defining characteristic that can dictate many aspects of an organism's life history in the pursuit of maximizing fitness, including escaping predators, capturing prey, and transitioning between habitats. Exhaustive exercise can have negative consequences for both short-term and long-term energetics and life history trade-offs, influencing fish survival and reproduction. Studies of swimming performance and exhaustive exercise in fish are often conducted on individual species, but few multispecies analyses exist and even fewer in field settings. In fish, swimming performance and exercise have historically been studied in the laboratory using swim tunnels, but an increasing body of work in recreational fisheries science provides a novel way to examine swimming capacity and exhaustion. Using fight time, the time it takes for a hooked fish to be landed on rod and reel fishing gear, as an opportunistic proxy for fish exhaustion, a multispecies meta-analysis of data from studies on recreational fisheries was conducted to elucidate the factors that most influence capacity for exhaustive exercise. Data from 39 species of freshwater and marine fish were aggregated, and negative binomial mixed effects models as well as phylogenetic least squares regression were used to identify the factors that most influenced exhaustive exercise in the field. Fish total length, aspect ratio of the caudal fin, and body form were significant factors in explaining the capacity for exhaustive exercise. Large migratory fish with high aspect ratios were able to fight, and therefore exercise, the longest. These results illustrate that body form and physiology are both deeply intertwined to inform function across fish species and point to angling fight time as a useful approximation of fish swimming capabilities that can be further developed for understanding the limits of fish exercise physiology.


Assuntos
Ecossistema , Natação , Animais , Natação/fisiologia , Filogenia , Anaerobiose
20.
Environ Biol Fishes ; 106(2): 381-416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36118617

RESUMO

Tropical and subtropical coastal flats are shallow regions of the marine environment at the intersection of land and sea. These regions provide myriad ecological goods and services, including recreational fisheries focused on flats-inhabiting fishes such as bonefish, tarpon, and permit. The cascading effects of climate change have the potential to negatively impact coastal flats around the globe and to reduce their ecological and economic value. In this paper, we consider how the combined effects of climate change, including extremes in temperature and precipitation regimes, sea level rise, and changes in nutrient dynamics, are causing rapid and potentially permanent changes to the structure and function of tropical and subtropical flats ecosystems. We then apply the available science on recreationally targeted fishes to reveal how these changes can cascade through layers of biological organization-from individuals, to populations, to communities-and ultimately impact the coastal systems that depend on them. We identify critical gaps in knowledge related to the extent and severity of these effects, and how such gaps influence the effectiveness of conservation, management, policy, and grassroots stewardship efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA