Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Phytoremediation ; : 1-14, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963333

RESUMO

A rapidly growing problem for life on earth is contamination of fresh water which is addressed in this article. By taking a glimpse on the causes of contaminations, persistent organic pollutants, especially synthetic dyes got prominent role. Here, out of commonly used techniques, adsorption using plant wastes was chosen for phytofiltration of such dyes. A natural adsorbent from plant source was selected and processed with acid, characterized with FTIR and SEM and then checked the efficacy on cationic dye brilliant green. Phytofiltration of dye was done to check the effectivity of both untreated (OA) and acid treated (OA-AC) form of Acacia concinna biowaste. Results were obtained, evaluated and presented here, giving maximum adsorption capacities (Qm) of AC and OA-AC 95.24 and 909.09 mg.g-1, respectively following Langmuir, pseudo second order kinetics and spontaneous exothermic nature, indicating their suitability to adopt on larger scale wastewater treatment effectively using green technology.


In this work, Acacia concinna both in untreated and acid treated form is used as an efficient adsorbent for the removal of Brilliant green dye from waste water, as not reported earlier, which proves its novelty. The values of adsorption capacities of both the adsorbent types are compared with different natural and synthetic adsorbents reported earlier, this comparison elaborate the efficacy of AC to be used as adsorbent and consider it as one of the efficient adsorbent materials naturally available.

2.
Int J Phytoremediation ; : 1-15, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755758

RESUMO

Pakistan is an agricultural country producing plenty of fruits, like: mango, banana, apple, peaches, grapes, plums, variety of citrus fruits including lemon, grapefruit, and oranges. So far the peels of most of the fruits are usually wasted and not properly utilized anywhere. In this work, the peels of banana and grapefruit are converted into biochar by slow pyrolysis under controlled supply of air and used for sequestering cyanide ions from aqueous medium after chemical modification with ZnCl2 and sodium dodecyl sulfate (SDS). The modified biochar was characterized by various instrumental techniques, like: SEM, FTIR, TGA, and CHNS. Different parameters, like: time, temperature, pH, and dose of adsorbent affecting the adsorption of cyanide ions, onto prepared biochar were optimized and to understand the adsorption phenomenon, kinetic and thermodynamic studies were performed. Concentration of cyanide ions was estimated by employing standard ion selective electrode system and it is found that Sodium Dodecyl Sulfate treated biochar of banana peels shown more adsorption capacity, i.e.,: 17.080 mg/g as compared to all samples. Present work revealed that the biochar produced from the fruit waste has sufficient potential to eliminate trace quantities of cyanide from water, especially after treatment with sodium dodecyl sulfate.


An industrial area in Asian and African countries where mining is done using traditional techniques is the major cause of cyanide toxicity in wastewater streams. So, here chemically fabricated biochar made by peels of banana and grape fruit is employed for removal of cyanide ion for controlling aquatic pollution using local resources in green way. Favorable results indicated the feasibility of this process, which is cost effective, convenient, ecofriendly, and sustainable.

3.
Environ Monit Assess ; 196(6): 524, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717730

RESUMO

The utilization of agricultural waste to create value-added goods has benefited waste management while resolving cost-effectiveness and food shortage problems. Returning biochar produced from agricultural waste to the agricultural field is a sustainable method of enhancing crop production while lowering the environmental effect of typical fertilizers. It also enhances soil condition by modulating pH, soil organic carbon, water retention capacity, and soil ion exchange potential. The current work concentrated on the production of iron oxide-loaded biochar from banana peels. Pyrolysis was carried out at temperatures ranging from 400 to 500 °C. The co-precipitation technique was utilized to impregnate Fe3O4 nanoparticles on biochar, and it showed to be an effective and trustworthy method. Loading was done in situ. Characterization techniques such as XRD, FTIR, CHNS, and TGA were employed to characterize synthesized materials. Swelling ratio, water retention, absorbance, and equilibrium water content percentage were used to study the adsorption capabilities of Fe3O4-loaded biochar, soil, and raw biochar. As a consequence, Fe3O4-enriched biochar was shown to have better adsorption capability than raw biochar, which in turn showed better adsorption properties than soil. Iron-loaded biochar was employed as a fertilizer in Abelmoschus esculentus (Okra), and the results showed that it is a cost-effective, environmentally friendly fertilizer.


Assuntos
Agricultura , Carvão Vegetal , Fertilizantes , Solo , Fertilizantes/análise , Carvão Vegetal/química , Agricultura/métodos , Solo/química , Ferro/química , Adsorção
4.
Int J Biol Macromol ; 256(Pt 1): 128285, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007018

RESUMO

The peels of Trapa natans (TRA) and Citrullus lanatus (CIT), were modified with a variety of chemicals to boost their surface for the optimization of adsorption performance by providing a greater number of additional active binding sites. Citric acid-processed peels (TRAC and CITC) had shown more favorable adsorption performance to eradicate acid violet 7 dye (AVS). Extra and additional active sites generated after chemical processing, including hydroxyl (OH), carboxyl (COOH), amines NH2, carbonyl, and ester (-O-CO-) groups, as evidenced from FTIR and SEM characterizations, may boost the potential of physicochemical integration of adsorbent surface activity in order to promote and encourage the retention of hazardous and risky AVS molecules from the water. The Langmuir isotherm assessed the qmax for the adsorption of AVS on TRAC, CITC, TRA, and CIT to be 212.8, 294, 24.3, and 60.6 mg/g, respectively, whereas the correlation coefficients assessed for both TRAC and CITC were 0.98 and for TRA and CIT were 0.97, closer to unity reflecting monolayer physio-sorption. According to Temkin, the adsorption of AVS on TRAC, TRA, CITC, and CIT gives "BT" values of 1.275, 0.947, 1.085, and 1.211 mg/g, also suggesting physio-sorption. Therefore, chemically modified peels can be employed for detoxification of AVS.


Assuntos
Compostos Azo , Citrullus , Lythraceae , Naftalenossulfonatos , Poluentes Químicos da Água , Adsorção , Ácido Cítrico , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
5.
Int J Anal Chem ; 2023: 9914633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090056

RESUMO

A novel pressurized flow system for circular thin-layer chromatography (PC-TLC) has been successfully established and employed for the separation of amino acids, dyes, and pigments for safe medical imaging applications. In this system, the mobile phase is applied to a regular TLC plate through the tube and needle of an intravenous infusion set. The needle was fused in a hole underneath the center of the plate, while the second side end of the tube was connected to a microburette containing the solvent. This new assembly proved itself better in terms of separation time (within 5 minutes) and controlled flow of the solvent and horizontal movement of analyte components over chromatograms with better separation and R f values (glutamine: 0.26, valine: 0.44, phenylalanine: 0.60, chlorophyll a: 0.52, chlorophyll b: 0.43, xanthophyll: 0.18, carotenoid: 0.97, and pheophytin: 0.60) when a number of samples of amino acids, dyes, and pigments were separated by the developed apparatus and the conventional TLC procedure. The developed method was found distinctly rapid, precise, and eco-friendly (less solvent consuming) as compared to traditional ascending TLC.

6.
Biomed Res Int ; 2022: 9914173, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017391

RESUMO

Nanoscience has developed various greener approaches as an alternate method for the synthesis of nanoparticles and nanocomposites. The present study discusses the efficacy of berries extract for the synthesis of ZnO nanocomposites. Characterization of synthesized nanocomposite were done by SEM, UV/VIS spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, and XRD techniques. The crystalline nature of the synthesized nanoparticles was verified by XRD pattern in the range of 10-80 nm. The UV absorption peak of Elaeagnus umbellata (ZnO-EU) nanocomposite at 340 nm, Rubus idaeus (ZnO-Ri) nanocomposite at 360 nm, and Rubus fruticosus (ZnO-Rf) nanocomposite at 360 nm was observed. The nanocomposites were analyzed for their antimicrobial activity and found to be effective against three phytopathogens. The antimicrobial activity of ZnO nanocomposites showed good results against Escherichia coli (341), Staphylococcus aureus (345B), and Pseudomonas aeruginosa (5994 NLF). This study presents a simple and inexpensive approach for synthesizing zinc oxide nanocomposites with effective antibacterial activity.


Assuntos
Anti-Infecciosos , Plantas Medicinais , Óxido de Zinco , Antibacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Escherichia coli , Frutas , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Óxido de Zinco/química , Óxido de Zinco/farmacologia
7.
Int J Phytoremediation ; 13(5): 410-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21598772

RESUMO

Adsorption is an environmental friendly process for removal and/or recovery of heavy metals from wastewater. In recent years, it has been substantiated as a popular technique to treat industrial waste effluents, with significant advantages. In this work, batchwise removal of chromium (III) ions from water by Polyalthia longifolia leaves was studied as a function of adsorbent dose, pH, contact time, and agitation speed. Surface characteristics of the leaves were evaluated by recording IR spectra. The Langmuir, Freundlich, and Temkin adsorption isotherms were employed to explain the sorption process. It was found that one gram of leaves can remove 1.87 mg of trivalent chromium when working at pH 3.0. It has been concluded that Polyalthia longifolia leaves can be used as cost-effective and benign adsorbents for removal of Cr(III) ions from wastewater.


Assuntos
Cromo/metabolismo , Polyalthia/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Biomassa , Cromo/análise , Concentração de Íons de Hidrogênio , Resíduos Industriais , Modelos Químicos , Movimento (Física) , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Polyalthia/crescimento & desenvolvimento , Espectrofotometria Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/análise , Purificação da Água
8.
Bioresour Technol ; 101(6): 1752-5, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19906528

RESUMO

The adsorption of lead(II) and cadmium(II) on peels of banana has been studied in batch mode using flame atomic absorption spectroscopy for metal estimation. Concerned parameters like adsorbent dose, pH, contact time and agitation speed were investigated. Langmuir, Freundlich and Temkin isotherms were employed to describe adsorption equilibrium. The maximum amounts of cadmium(II) and lead(II) adsorbed (qm), as evaluated by Langmuir isotherm, were 5.71 mg and 2.18 mg per gram of powder of banana peels, respectively. Study concluded that banana peels, a waste material, have good potential as an adsorbent to remove toxic metals like lead and cadmium from water.


Assuntos
Biotecnologia/métodos , Cádmio/química , Recuperação e Remediação Ambiental/métodos , Chumbo/química , Musa/metabolismo , Espectrofotometria Atômica/métodos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Relação Dose-Resposta a Droga , Substâncias Perigosas , Concentração de Íons de Hidrogênio , Temperatura , Fatores de Tempo , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA