Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Pineal Res ; 76(5): e12996, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39129720

RESUMO

In mammals, seasonal opportunities and challenges are anticipated through programmed changes in physiology and behavior. Appropriate anticipatory timing depends on synchronization to the external solar year, achieved through the use of day length (photoperiod) as a synchronizing signal. In mammals, nocturnal production of melatonin by the pineal gland is the key hormonal mediator of photoperiodic change, exerting its effects via the hypothalamopituitary axis. In this review/perspective, we consider the key developments during the history of research into the seasonal synchronizer effect of melatonin, highlighting the role that the pars tuberalis-tanycyte module plays in this process. We go on to consider downstream pathways, which include discrete hypothalamic neuronal populations. Neurons that express the neuropeptides kisspeptin and (Arg)(Phe)-related peptide-3 (RFRP-3) govern seasonal reproductive function while neurons that express somatostatin may be involved in seasonal metabolic adaptations. Finally, we identify several outstanding questions, which need to be addressed to provide a much thorough understanding of the deep impact of melatonin upon seasonal synchronization.


Assuntos
Mamíferos , Melatonina , Estações do Ano , Melatonina/metabolismo , Animais , Mamíferos/metabolismo , Fotoperíodo , Humanos , Glândula Pineal/metabolismo
2.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569429

RESUMO

We demonstrate here that highly sensitive in vitro bioassays for FSH, TSH, and PTH can be set up in mouse Leydig Tumor Cells (mLTC), in addition to the normal LH/CG bioassay, after they were transfected with expression vectors encoding the corresponding Gs Protein-Coupled Receptors (GsPCR), such as FSHR, TSHR, or PTHR. Although the ß2 adrenergic receptor is also a GsPCR, its expression in mLTC led to a significant but very low cAMP response compared to those observed with FSH, TSH, or PTH. Similarly, after transfection of the GiPCR MT1 melatonin receptor, we did not observe any inhibitory effect by melatonin of the LH or hCG stimulation. Interestingly, after transfection of mLTC with the human kisspeptin receptor (hKpR), which is a GqPCR, we observed a dose-dependent synergy of 10-12-10-7 M kisspeptin variants with a fixed concentration of 0.3 nM LH or hCG. Without any exogenous receptor transfection, a 2 h preincubation with OT or AVP led to a dose-dependent cAMP response to a fixed dose of LH or hCG. Therefore, highly sensitive in vitro bioassays for various hormones and other GPCR ligands can be set up in mLTC to measure circulating concentrations in only 3-10 µL of blood or other body fluids. Nevertheless, the development of an LHRKO mLTC cell line will be mandatory to obtain strict specificity for these bioassays to eliminate potential cross-reaction with LH or CG.


Assuntos
Kisspeptinas , Receptores do LH , Camundongos , Animais , Humanos , Receptores do LH/genética , Receptores do LH/metabolismo , Kisspeptinas/metabolismo , Ligantes , AMP Cíclico/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Tireotropina/metabolismo , Gonadotropina Coriônica/metabolismo
3.
J Exp Biol ; 224(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494651

RESUMO

Mammals living at temperate latitudes typically display annual cyclicity in their reproductive activity: births are synchronized when environmental conditions are most favorable. In a majority of these species, day length is the main proximate factor used to anticipate seasonal changes and to adapt physiology. The brain integrates this photoperiodic signal through key hypothalamic structures, which regulate the reproductive axis. In this context, our study aimed to characterize regulations that occur along the hypothalamo-pituitary-gonadal (HPG) axis in male fossorial water voles (Arvicola terrestris, also known as Arvicola amphibius) throughout the year and to further probe the implication of photoperiod in these seasonal regulations. Our monthly field monitoring showed dramatic seasonal changes in the morphology and activity of reproductive organs, as well as in the androgen-dependent lateral scent glands. Moreover, our data uncovered seasonal variations at the hypothalamic level. During the breeding season, kisspeptin expression in the arcuate nucleus (ARC) decreases, while RFRP3 expression in the dorsomedial hypothalamic nucleus (DMH) increases. Our follow-up laboratory study revealed activation of the reproductive axis and confirmed a decrease in kisspeptin expression in males exposed to a long photoperiod (summer condition) compared with those maintained under a short photoperiod (winter condition) that retain all features reminiscent of sexual inhibition. Altogether, our study characterizes neuroendocrine and anatomical markers of seasonal reproductive rhythmicity in male water voles and further suggests that these seasonal changes are strongly impacted by photoperiod.


Assuntos
Arvicolinae , Fotoperíodo , Animais , Hipotálamo , Masculino , Reprodução , Estações do Ano
4.
Gen Comp Endocrinol ; 311: 113853, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34265346

RESUMO

Seasonally breeding mammals display timely physiological switches between reproductive activity and sexual rest, which ensure synchronisation of births at the most favourable time of the year. These switches correlate with seasonal changes along the hypothalamo-pituitary-gonadal axis, but they are primarily orchestrated at the hypothalamic level through environmental control of KISS1-dependent GnRH release. Our field study shows that births of fossorial water voles, Arvicola terrestris, are concentrated between March and October, which indicates the existence of an annual reproductive cycle in this species. Monthly field monitoring for over a year further reveals dramatic seasonal changes in the morphology of the ovary, uterus and lateral scent glands, which correlate with the reproductive status. Finally, we demonstrate seasonal variation in kisspeptin expression within the hypothalamic arcuate nucleus. Altogether, this study demonstrates a marked rhythm of seasonal breeding in the water vole and we speculate that this is governed by seasonal changes in photoperiod.


Assuntos
Arvicolinae , Fotoperíodo , Animais , Feminino , Hipotálamo/metabolismo , Sistemas Neurossecretores , Estações do Ano
5.
J Exp Biol ; 223(Pt 16)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32587064

RESUMO

Organisms use changes in photoperiod to anticipate and exploit favourable conditions in a seasonal environment. While species living at temperate latitudes receive day length information as a year-round input, species living in the Arctic may spend as much as two-thirds of the year without experiencing dawn or dusk. This suggests that specialised mechanisms may be required to maintain seasonal synchrony in polar regions. Svalbard ptarmigan (Lagopus muta hyperborea) are resident at 74-81°N latitude. They spend winter in constant darkness (DD) and summer in constant light (LL); extreme photoperiodic conditions under which they do not display overt circadian rhythms. Here, we explored how Arctic adaptation in circadian biology affects photoperiodic time measurement in captive Svalbard ptarmigan. For this purpose, DD-adapted birds, showing no circadian behaviour, either remained in prolonged DD, were transferred into a simulated natural photoperiod (SNP) or were transferred directly into LL. Birds transferred from DD to LL exhibited a strong photoperiodic response in terms of activation of the hypothalamic thyrotropin-mediated photoperiodic response pathway. This was assayed through expression of the Eya3, Tshß and deiodinase genes, as well as gonadal development. While transfer to SNP established synchronous diurnal activity patterns, activity in birds transferred from DD to LL showed no evidence of circadian rhythmicity. These data show that the Svalbard ptarmigan does not require circadian entrainment to develop a photoperiodic response involving conserved molecular elements found in temperate species. Further studies are required to define how exactly Arctic adaptation modifies seasonal timer mechanisms.


Assuntos
Ritmo Circadiano , Fotoperíodo , Animais , Regiões Árticas , Aves , Estações do Ano , Svalbard
6.
Cell Mol Life Sci ; 75(5): 905-919, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28975373

RESUMO

Thyroid hormone (TH) directs seasonal breeding through reciprocal regulation of TH deiodinase (Dio2/Dio3) gene expression in tanycytes in the ependymal zone of the medio-basal hypothalamus (MBH). Thyrotropin secretion by the pars tuberalis (PT) is a major photoperiod-dependent upstream regulator of Dio2/Dio3 gene expression. Long days enhance thyrotropin production, which increases Dio2 expression and suppresses Dio3 expression, thereby heightening TH signaling in the MBH. Short days appear to exert the converse effect. Here, we combined endocrine profiling and transcriptomics to understand how photoperiod and TH control the ovine reproductive status through effects on hypothalamic function. Almost 3000 genes showed altered hypothalamic expression between the breeding- and non-breeding seasons, showing gene ontology enrichment for cell signaling, epigenetics and neural plasticity. In contrast, acute switching from a short (SP) to a long photoperiod (LP) affected the expression of a much smaller core of 134 LP-responsive genes, including a canonical group previously linked to photoperiodic synchronization. Reproductive switch-off at the end of the winter breeding season was completely blocked by thyroidectomy (THX), despite a very modest effect on the hypothalamic transcriptome. Only 49 genes displayed altered expression between intact and THX ewes, including less than 10% of the LP-induced gene set. Neuroanatomical mapping showed that many LP-induced genes were expressed in the PT, independently of the TH status. In contrast, TH-sensitive seasonal genes were principally expressed in the ependymal zone. These data highlight the distinctions between seasonal remodeling effects, which appear to be largely independent of TH, and TH-dependent localised effects which are permissive for transition to the non-breeding state.


Assuntos
Reprodução/fisiologia , Hormônios Tireóideos/metabolismo , Transcriptoma , Animais , Barbitúricos/farmacologia , Estradiol/farmacologia , Feminino , Hormônio Foliculoestimulante/metabolismo , Hormônio Luteinizante/metabolismo , Ovariectomia , Fotoperíodo , Adeno-Hipófise/efeitos dos fármacos , Adeno-Hipófise/metabolismo , RNA/isolamento & purificação , RNA/metabolismo , Estações do Ano , Ovinos , Tireoidectomia , Tiroxina/metabolismo , Transcriptoma/efeitos dos fármacos , Tri-Iodotironina/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(23): 9547-52, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23690615

RESUMO

The suprachiasmatic nucleus (SCN) coordinates circadian rhythms that adapt the individual to solar time. SCN pacemaking revolves around feedback loops in which expression of Period (Per) and Cryptochrome (Cry) genes is periodically suppressed by their protein products. Specifically, PER/CRY complexes act at E-box sequences in Per and Cry to inhibit their transactivation by CLOCK/BMAL1 heterodimers. To function effectively, these closed intracellular loops need to be synchronized between SCN cells and to the light/dark cycle. For Per expression, this is mediated by neuropeptidergic and glutamatergic extracellular cues acting via cAMP/calcium-responsive elements (CREs) in Per genes. Cry genes, however, carry no CREs, and how CRY-dependent SCN pacemaking is synchronized remains unclear. Furthermore, whereas reporter lines are available to explore Per circadian expression in real time, no Cry equivalent exists. We therefore created a mouse, B6.Cg-Tg(Cry1-luc)01Ld, carrying a transgene (mCry1-luc) consisting of mCry1 elements containing an E-box and E'-box driving firefly luciferase. mCry1-luc organotypic SCN slices exhibited stable circadian bioluminescence rhythms with appropriate phase, period, profile, and spatial organization. In SCN lacking vasoactive intestinal peptide or its receptor, mCry1 expression was damped and desynchronized between cells. Despite the absence of CREs, mCry1-luc expression was nevertheless (indirectly) sensitive to manipulation of cAMP-dependent signaling. In mPer1/2-null SCN, mCry1-luc bioluminescence was arrhythmic and no longer suppressed by elevation of cAMP. Finally, an SCN graft procedure showed that PER-independent as well as PER-dependent mechanisms could sustain circadian expression of mCry1. The mCry1-luc mouse therefore reports circadian mCry1 expression and its interactions with vasoactive intestinal peptide, cAMP, and PER at the heart of the SCN pacemaker.


Assuntos
Ritmo Circadiano/fisiologia , Criptocromos/metabolismo , Retroalimentação Fisiológica/fisiologia , Proteínas Circadianas Period/metabolismo , Núcleo Supraquiasmático/fisiologia , Animais , AMP Cíclico/metabolismo , Primers do DNA/genética , Luciferases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
Biol Reprod ; 90(2): 36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24429215

RESUMO

Kisspeptin has emerged as the most potent gonadotropin-releasing hormone (GnRH) secretagogue and appears to represent the penultimate step in the central control of reproduction. In the sheep, we showed that kisspeptin could be used to manipulate gonadotropin secretion and control ovulation. Prompted by these results, we decided to investigate whether kisspeptin could be used as an ovulation-inducing agent in another photoperiodic domestic mammal, the horse. Equine kisspeptin-10 (eKp10) was administered intravenously as bolus injections or short- to long-term perfusions to Welsh pony mares, either during the anestrus season or at various stages of the cycle during the breeding season. In all the experimental conditions, eKp10 reliably increased peripheral concentrations of both luteinizing hormone and follicle-stimulating hormone. The nature of the response to eKp10 was consistent across experimental conditions and physiological states: the increase in gonadotropins was always rapid and essentially transient even when eKp10 was perfused for prolonged periods. Furthermore, eKp10 consistently failed to induce ovulation in the mare. To gain insights into the underlying mechanisms, we used acute injections or perfusions of GnRH. We also cloned the equine orthologues of the kisspeptin precursor and Kiss1r; this was justified by the facts that the current equine genome assembly predicted an amino acid difference between eKp10 and Kp10 in other species while an equine orthologue for Kiss1r was missing altogether. In light of these findings, potential reasons for the divergence in the response to kisspeptin between ewe and mare are discussed. Our data highlight that kisspeptin is not a universal ovulation-inducing agent.


Assuntos
Gonadotropinas/metabolismo , Cavalos , Kisspeptinas/administração & dosagem , Indução da Ovulação/veterinária , Ovulação/efeitos dos fármacos , Animais , Clonagem Molecular , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Cavalos/fisiologia , Kisspeptinas/genética , Kisspeptinas/metabolismo , Indução da Ovulação/métodos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/isolamento & purificação , Falha de Tratamento
9.
Mol Cell Endocrinol ; 588: 112216, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556161

RESUMO

Photoperiod is the main environmental driver of seasonal responses in organisms living at temperate and polar latitudes. Other external cues such as food and temperature, and internal cues including hormones, intervene to fine-tune phasing of physiological functions to the solar year. In mammals, the medio-basal hypothalamus (MBH) is the key integrator of these cues, which orchestrates a wide array of seasonal functions, including breeding. Here, using RNAseq and RT-qPCR, we demonstrate that molecular components of the photoperiodic response previously identified in ewes are broadly conserved in does (female goats, Capra hircus), with a common core of ∼50 genes. This core group can be defined as the "MBH seasonal trancriptome", which includes key players of the pars tuberalis-tanycytes neuroendocrine retrograde pathway that governs intra-MBH photoperiodic switches of triiodothyronine (T3) production (Tshb, Eya3, Dio2 and SlcO1c1), the two histone methyltransferases Suv39H2 and Ezh2 and the secreted protein Vmo1. Prior data in ewes revealed that T3 and estradiol (E2), both key hormones for the proper timing of seasonal breeding, differentially impact the MBH seasonal transcriptome, and identified cellular and molecular targets through which these hormones might act. In contrast, information regarding the potential impact of progesterone (P4) upon the MBH transcriptome was nonexistent. Here, we demonstrate that P4 has no discernible transcriptional impact in either does or ewes. Taken together, our data show that does and ewes possess a common core set of photoperiod-responsive genes in the MBH and conclusively demonstrate that P4 is not a key regulator of the MBH transcriptome.


Assuntos
Cabras , Hipotálamo , Fotoperíodo , Progesterona , Ovinos , Transcriptoma , Animais , Feminino , Estro , Cabras/genética , Hipotálamo/metabolismo , Progesterona/metabolismo , Estações do Ano , Análise de Sequência de RNA , Ovinos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Conjuntos de Dados como Assunto
10.
Int J Neuropsychopharmacol ; 16(7): 1649-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23425507

RESUMO

In addition to its neurotrophic role, brain-derived neurotrophic factor (BDNF) is involved in a wide array of functions, including anxiety and pain. The central amygdaloid nucleus (CeA) contains a high concentration of BDNF in terminals, originating from the pontine parabrachial nucleus. Since the spino-parabrachio-amygdaloid neural pathway is known to convey nociceptive information, we hypothesized a possible involvement of BDNF in supraspinal pain-related processes. To test this hypothesis, we generated localized deletion of BDNF in the parabrachial nucleus using local bilateral injections of adeno-associated viruses in adult floxed-BDNF mice. Basal thresholds of thermal and mechanical nociceptive responses were not altered by BDNF loss and no behavioural deficit was noticed in anxiety and motor tests. However, BDNF-deleted animals displayed a major decrease in the analgesic effect of morphine. In addition, intra-CeA injections of the BDNF scavenger TrkB-Fc in control mice also decreased morphine-induced analgesia. Finally, the number of c-Fos immunoreactive nuclei after acute morphine injection was decreased by 45% in the extended amygdala of BDNF-deleted animals. The absence of BDNF in the parabrachial nucleus thus altered the parabrachio-amygdaloid pathway. Overall, our study provides evidence that BDNF produced in the parabrachial nucleus modulates the functions of the parabrachio-amygdaloid pathway in opiate analgesia.


Assuntos
Tonsila do Cerebelo/metabolismo , Analgésicos Opioides/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Morfina/farmacologia , Ponte/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Adaptação à Escuridão/efeitos dos fármacos , Dependovirus/genética , Comportamento Exploratório/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/efeitos dos fármacos , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Ponte/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Teste de Desempenho do Rota-Rod
11.
FASEB J ; 26(8): 3321-35, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22562834

RESUMO

Mutations of clock genes can lead to diabetes and obesity. REV-ERBα, a nuclear receptor involved in the circadian clockwork, has been shown to control lipid metabolism. To gain insight into the role of REV-ERBα in energy homeostasis in vivo, we explored daily metabolism of carbohydrates and lipids in chow-fed, unfed, or high-fat-fed Rev-erbα(-/-) mice and their wild-type littermates. Chow-fed Rev-erbα(-/-) mice displayed increased adiposity (2.5-fold) and mild hyperglycemia (∼10%) without insulin resistance. Indirect calorimetry indicates that chow-fed Rev-erbα(-/-) mice utilize more fatty acids during daytime. A 24-h nonfeeding period in Rev-erbα(-/-) animals favors further fatty acid mobilization at the expense of glycogen utilization and gluconeogenesis, without triggering hypoglycemia and hypothermia. High-fat feeding in Rev-erbα(-/-) mice amplified metabolic disturbances, including expression of lipogenic factors. Lipoprotein lipase (Lpl) gene, critical in lipid utilization/storage, is triggered in liver at night and constitutively up-regulated (∼2-fold) in muscle and adipose tissue of Rev-erbα(-/-) mice. We show that CLOCK, up-regulated (2-fold) at night in Rev-erbα(-/-) mice, can transactivate Lpl. Thus, overexpression of Lpl facilitates muscle fatty acid utilization and contributes to fat overload. This study demonstrates the importance of clock-driven Lpl expression in energy balance and highlights circadian disruption as a potential cause for the metabolic syndrome.


Assuntos
Proteínas CLOCK/fisiologia , Metabolismo dos Carboidratos/fisiologia , Metabolismo Energético/fisiologia , Metabolismo dos Lipídeos/fisiologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , Animais , Ritmo Circadiano/fisiologia , Dieta Hiperlipídica , Feminino , Gluconeogênese/fisiologia , Homeostase/fisiologia , Resistência à Insulina/fisiologia , Lipase Lipoproteica/metabolismo , Glicogênio Hepático/metabolismo , Masculino , Camundongos , Atividade Motora , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/deficiência
12.
J Immunol ; 187(12): 6291-300, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22075697

RESUMO

Circadian clocks regulate many important aspects of physiology, and their disturbance leads to various medical conditions. Circadian variations have been found in immune system variables, including daily rhythms in circulating WBC numbers and serum concentration of cytokines. However, control of immune functional responses by the circadian clock has remained relatively unexplored. In this study, we show that mouse lymph nodes exhibit rhythmic clock gene expression. T cells from lymph nodes collected over 24 h show a circadian variation in proliferation after stimulation via the TCR, which is blunted in Clock gene mutant mice. The tyrosine kinase ZAP70, which is just downstream of the TCR in the T cell activation pathway and crucial for T cell function, exhibits rhythmic protein expression. Lastly, mice immunized with OVA peptide-loaded dendritic cells in the day show a stronger specific T cell response than mice immunized at night. These data reveal circadian control of the Ag-specific immune response and a novel regulatory mode of T cell proliferation, and may provide clues for more efficient vaccination strategies.


Assuntos
Ritmo Circadiano/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos CD28/fisiologia , Proteínas CLOCK/administração & dosagem , Proteínas CLOCK/biossíntese , Proteínas CLOCK/imunologia , Proliferação de Células , Células Cultivadas , Linfonodos/citologia , Linfonodos/imunologia , Linfonodos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Receptores de Antígenos de Linfócitos T/fisiologia , Transdução de Sinais/imunologia , Subpopulações de Linfócitos T/metabolismo , Fatores de Tempo , Regulação para Cima/imunologia
13.
J Neuroendocrinol ; 35(3): e13242, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36880357

RESUMO

Opioid peptides are well-known modulators of the central control of reproduction. Among them, dynorphin coexpressed in kisspeptin (KP) neurons of the arcuate nucleus (ARC) has been thoroughly studied for its autocrine effect on KP release through κ opioid receptors. Other studies have suggested a role for ß-endorphin (BEND), a peptide cleaved from the pro-opiomelanocortin precursor, on food intake and central control of reproduction. Similar to KP, BEND content in the ARC of sheep is modulated by day length and BEND modulates food intake in a dose-dependent manner. Because KP levels in the ARC vary with photoperiodic and metabolic status, a photoperiod-driven influence of BEND neurons on neighboring KP neurons is plausible. The present study aimed to investigate a possible modulatory action of BEND on KP neurons located in the ovine ARC. Using confocal microscopy, numerous KP appositions on BEND neurons were found but there was no photoperiodic variation of the number of these interactions in ovariectomized, estradiol-replaced ewes. By contrast, BEND terminals on KP neurons were twice as numerous under short days, in ewes having an activated gonadotropic axis, compared to anestrus ewes under long days. Injection of 5 µg BEND into the third ventricle of short-day ewes induced a significant and specific increase of activated KP neurons (16% vs. 9% in controls), whereas the percentage of overall activated (c-Fos positive) neurons, was similar between both groups. These data suggest a photoperiod-dependent influence of BEND on KP neurons of the ARC, which may influence gonadotropin-releasing hormone pulsatile secretion and inform KP neurons about metabolic status.


Assuntos
Núcleo Arqueado do Hipotálamo , Kisspeptinas , Feminino , Animais , Ovinos , Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , beta-Endorfina/metabolismo , beta-Endorfina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo
14.
Sci Rep ; 13(1): 951, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653419

RESUMO

The mechanisms underlying the photoperiodic control of reproduction in mammals and birds have been recently clarified. In contrast, the potential impact of photoperiod on more complex, integrative processes, such as cognitive behaviors, remains poorly characterized. Here, we investigated the impact of contrasted long and short photoperiods (LP, 16 h light/day and SP, 8 h light/day, respectively) on learning, spatial orientation abilities, and emotional reactivity in male Japanese quail. In addition, we quantified cell proliferation and young cell maturation/migration within the hippocampus, a brain region involved in spatial orientation. Our study reveals that, in male quail, SP increases emotional responses and spatial orientation abilities, compared to LP. Behaviorally, SP birds were found to be more fearful than LP birds, exhibiting more freezing in the open field and taking longer to exit the dark compartment in the emergence test. Furthermore, SP birds were significantly less aggressive than LP birds in a mirror test. Cognitively, SP birds were slower to habituate and learn a spatial orientation task compared to LP birds. However, during a recall test, SP birds performed better than LP birds. From a neuroanatomical standpoint, SP birds had a significantly lower density of young neurons, and also tended to have a lower density of mature neurons within the hippocampus, compared to LP birds. In conclusion, our data reveal that, beyond breeding control, photoperiod also exerts a profound influence on behavior, cognition, and brain plasticity, which comprise the seasonal program of this species.


Assuntos
Coturnix , Fotoperíodo , Animais , Masculino , Coturnix/fisiologia , Hipocampo , Cognição , Neurogênese , Mamíferos
15.
Gen Comp Endocrinol ; 179(2): 289-95, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22982975

RESUMO

The annual cycle of changing day length (photoperiod) is widely used by animals to synchronise their biology to environmental seasonality. In mammals, melatonin is the key hormonal relay for the photoperiodic message, governing thyroid-stimulating hormone (TSH) production in the pars tuberalis (PT) of the pituitary stalk. TSH acts on neighbouring hypothalamic cells known as tanycytes, which in turn control hypothalamic function through effects on thyroid hormone (TH) signalling, mediated by changes in expression of the type II and III deiodinases (Dio2 and Dio3, respectively). Among seasonally breeding rodents, voles of the genus Microtus are notable for a high degree of sensitivity to nutritional and social cues, which act in concert with photoperiod to control reproductive status. In the present study, we investigated whether the TSH/Dio2/Dio3 signalling pathway of female common voles (Microtus arvalis) shows a similar degree of photoperiodic sensitivity to that described in other seasonal mammal species. Additionally, we sought to determine whether the plant metabolite 6-methoxy-2-benzoxazolinone (6-MBOA), described previously as promoting reproductive activation in voles, had any influence on the TSH/Dio2/Dio3 system. Our data demonstrate a high degree of photoperiodic sensitivity in this species, with no observable effects of 6-MBOA on upstream pituitary/hypothalamic gene expression. Further studies are required to characterise how photoperiodic and nutritional signals interact to modulate hypothalamic TH signalling pathways in mammals.


Assuntos
Arvicolinae/metabolismo , Benzoxazóis/farmacologia , Hipotálamo/metabolismo , Fotoperíodo , Hipófise/metabolismo , Animais , Feminino , Expressão Gênica/efeitos da radiação , Hipotálamo/efeitos dos fármacos , Iodeto Peroxidase/metabolismo , Hipófise/efeitos dos fármacos , Estações do Ano , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Tireotropina/biossíntese , Iodotironina Desiodinase Tipo II
16.
J Neuroendocrinol ; 34(5): e13124, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35384117

RESUMO

Synchronization of mammalian breeding activity to the annual change of photoperiod and environmental conditions is of the utmost importance for individual survival and species perpetuation. Subsequent to the early 1960s, when the central role of melatonin in this adaptive process was demonstrated, our comprehension of the mechanisms through which light regulates gonadal activity has increased considerably. The current model for the photoperiodic neuroendocrine system points to pivotal roles for the melatonin-sensitive pars tuberalis (PT) and its seasonally-regulated production of thyroid-stimulating hormone (TSH), as well as for TSH-sensitive hypothalamic tanycytes, radial glia-like cells located in the basal part of the third ventricle. Tanycytes respond to TSH through increased expression of thyroid hormone (TH) deiodinase 2 (Dio2), which leads to heightened production of intrahypothalamic triiodothyronine (T3) during longer days of spring and summer. There is strong evidence that this local, long-day driven, increase in T3 links melatonin input at the PT to gonadotropin-releasing hormone (GnRH) output, to align breeding with the seasons. The mechanism(s) through which T3 impinges upon GnRH remain(s) unclear. However, two distinct neuronal populations of the medio-basal hypothalamus, which express the (Arg)(Phe)-amide peptides kisspeptin and RFamide-related peptide-3, appear to be well-positioned to relay this seasonal T3 message towards GnRH neurons. Here, we summarize our current understanding of the cellular, molecular and neuroendocrine players, which keep track of photoperiod and ultimately govern GnRH output and seasonal breeding.


Assuntos
Melatonina , Fotoperíodo , Animais , Hormônio Liberador de Gonadotropina , Kisspeptinas , Mamíferos , Melatonina/metabolismo , Reprodução/fisiologia , Estações do Ano , Tireotropina
17.
J Neuroendocrinol ; 34(10): e13198, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36168278

RESUMO

In mammals, the medio-basal hypothalamus (MBH) integrates photoperiodic and food-related cues to ensure timely phasing of physiological functions, including seasonal reproduction. The current human epidemics of obesity and associated reproductive disorders exemplifies the tight link between metabolism and reproduction. Yet, how food-related cues impact breeding at the level of the MBH remains unclear. In this respect, the sheep, which is a large diurnal mammal with a marked dual photoperiodic/metabolic control of seasonal breeding, is a relevant model. Here, we present a large-scale study in ewes (n = 120), which investigated the impact of food restriction (FRes) on the MBH transcriptome using unbiased RNAseq, followed by RT-qPCR. Few genes (~100) were impacted by FRes and the transcriptional impact was very modest (<2-fold increase or < 50% decrease for most genes). As anticipated, FRes increased expression of Npy/AgRP/LepR and decreased expression of Pomc/Cartpt, while Kiss1 expression was not impacted. Of particular interest, Eya3, Nmu and Dio2, genes involved in photoperiodic decoding within the MBH, were also affected by FRes. Finally, we also identified a handful of genes not known to be regulated by food-related cues (e.g., RNase6, HspA6, Arrdc2). In conclusion, our transcriptomics study provides insights into the impact of metabolism on the MBH in sheep, which may be relevant to human, and identifies possible molecular links between metabolism and (seasonal) reproduction.


Assuntos
Hipotálamo , Transcriptoma , Humanos , Animais , Ovinos , Feminino , Estações do Ano , Hipotálamo/metabolismo , Fotoperíodo , Reprodução/fisiologia , Mamíferos
18.
Mol Cell Endocrinol ; 557: 111752, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35973528

RESUMO

Hypothalamic control of reproduction relies on GnRH and kisspeptin (KP) secretions. KP neurons are sensitive to sex steroids and metabolic status and their distribution overlaps with neurons producing apelin, a metabolic hormone known to decrease LH secretion in rats. Here, we observed neuroanatomical contacts between apelin fibers and both KP and GnRH neurons in the hypothalamus of male rodents. Intracerebroventricular apelin infusion for 2 weeks in male mice did not decrease LH levels nor did it affect gene expression for KP, neurokinin B and dynorphin. Finally, increasing apelin concentrations did not modulate Ca2+ levels of cultured GnRH neurons, while 10 µM apelin infusion on forskolin pretreated GnRH neurons revoked a rhythmic activity in 18% of GnRH neurons. These results suggest that acute apelin effect on LH secretion does not involve modulation of gene expression in KP neurons but may affect the secretory activity of GnRH neurons.


Assuntos
Hormônio Liberador de Gonadotropina , Neurocinina B , Animais , Apelina , Receptores de Apelina , Núcleo Arqueado do Hipotálamo/metabolismo , Colforsina/farmacologia , Dinorfinas/genética , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante/farmacologia , Masculino , Camundongos , Neurocinina B/genética , Neurônios/metabolismo , Ratos , Esteroides/metabolismo
19.
Psychoneuroendocrinology ; 136: 105594, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34875421

RESUMO

Chronic stress and the gut microbiota appear to comprise a feed-forward loop, which contributes to the development of depressive disorders. Evidence suggests that memory can also be impaired by either chronic stress or microbiota imbalance. However, it remains to be established whether these could be a part of an integrated loop model and be responsible for memory impairments. To shed light on this, we used a two-pronged approach in Japanese quail: first stress-induced alterations in gut microbiota were characterized, then we tested whether this altered microbiota could affect brain and memory function when transferred to a germ-free host. The cecal microbiota of chronically stressed quails was found to be significantly different from that of unstressed individuals with lower α and ß diversities and increased Bacteroidetes abundance largely represented by the Alistipes genus, a well-known stress target in rodents and humans. The transfer of this altered microbiota into germ-free quails decreased their spatial and cue-based memory abilities as previously demonstrated in the stressed donors. The recipients also displayed increased anxiety-like behavior, reduced basal plasma corticosterone levels and differential gene expression in the brain. Furthermore, cecal microbiota transfer from a chronically stressed individual was sufficient to mimic the adverse impact of chronic stress on memory in recipient hosts and this action may be related to the Alistipes genus. Our results provide evidence of a feed-forward loop system linking the microbiota-gut-brain axis to stress and memory function and suggest that maintaining a healthy microbiota could help alleviate memory impairments linked to chronic stress.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Ansiedade/metabolismo , Corticosterona , Coturnix , Transtornos da Memória
20.
Curr Biol ; 18(15): 1147-52, 2008 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-18674911

RESUMO

In mammals, day-length-sensitive (photoperiodic) seasonal breeding cycles depend on the pineal hormone melatonin, which modulates secretion of reproductive hormones by the anterior pituitary gland [1]. It is thought that melatonin acts in the hypothalamus to control reproduction through the release of neurosecretory signals into the pituitary portal blood supply, where they act on pituitary endocrine cells [2]. Contrastingly, we show here that during the reproductive response of Soay sheep exposed to summer day lengths, the reverse applies: Melatonin acts directly on anterior-pituitary cells, and these then relay the photoperiodic message back into the hypothalamus to control neuroendocrine output. The switch to long days causes melatonin-responsive cells in the pars tuberalis (PT) of the anterior pituitary to increase production of thyrotrophin (TSH). This acts locally on TSH-receptor-expressing cells in the adjacent mediobasal hypothalamus, leading to increased expression of type II thyroid hormone deiodinase (DIO2). DIO2 initiates the summer response by increasing hypothalamic tri-iodothyronine (T3) levels. These data and recent findings in quail [3] indicate that the TSH-expressing cells of the PT play an ancestral role in seasonal reproductive control in vertebrates. In mammals this provides the missing link between the pineal melatonin signal and thyroid-dependent seasonal biology.


Assuntos
Fotoperíodo , Estações do Ano , Comportamento Sexual Animal/fisiologia , Ovinos/fisiologia , Tireotropina/metabolismo , Animais , Evolução Biológica , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Masculino , Melatonina/metabolismo , Adeno-Hipófise/metabolismo , Reprodução/fisiologia , Transdução de Sinais , Tireotropina/farmacologia , Tireotropina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA