Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(28): e2116675119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867753

RESUMO

Collagen is the most abundant component of mammalian extracellular matrices. As such, the development of materials that mimic the biological and mechanical properties of collagenous tissues is an enduring goal of the biomaterials community. Despite the development of molded and 3D printed collagen hydrogel platforms, their use as biomaterials and tissue engineering scaffolds is hindered by either low stiffness and toughness or processing complexity. Here, we demonstrate the development of stiff and tough biohybrid composites by combining collagen with a zwitterionic hydrogel through simple mixing. This combination led to the self-assembly of a nanostructured fibrillar network of collagen that was ionically linked to the surrounding zwitterionic hydrogel matrix, leading to a composite microstructure reminiscent of soft biological tissues. The addition of 5-15 mg mL-1 collagen and the formation of nanostructured fibrils increased the elastic modulus of the composite system by 40% compared to the base zwitterionic matrix. Most notably, the addition of collagen increased the fracture energy nearly 11-fold ([Formula: see text] 180 J m-2) and clearly delayed crack initiation and propagation. These composites exhibit elastic modulus ([Formula: see text] 0.180 MJ) and toughness ([Formula: see text]0.617 MJ m-3) approaching that of biological tissues such as articular cartilage. Maintenance of the fibrillar structure of collagen also greatly enhanced cytocompatibility, improving cell adhesion more than 100-fold with >90% cell viability.


Assuntos
Materiais Biocompatíveis , Colágeno , Hidrogéis , Engenharia Tecidual , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Colágeno/química , Hidrogéis/química , Alicerces Teciduais/química
2.
Nature ; 588(7839): 594-595, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33361786
3.
Adv Mater ; : e2402217, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872253

RESUMO

Computed Axial Lithography (CAL)is an emerging technology for manufacturing complex parts, all at once, by circumventing the traditional layered approach using tomography. Overprinting, a unique additive manufacturing capability of CAL, allows for a 3D geometry to be formed around a prepositioned insert where the occlusion of light is compensated for by the other angular projections. This method opens the door for novel applications within additive manufacturing for multi-material systems such as endoskeletal robots. Herein, this work presents one such application with a simple Gelatin Methacrylate (GelMA)hydrogel osmotic actuator with an embedded endoskeletal system. GelMA is an ideal material for this application as it is swellable and has reversible thermal gelation, enabling suspension of the endoskeleton during printing. By tuning the material formulation, the actuator design, and post-processing, swelling-induced bending actuation of 60 degrees was achieved. To aid in the printing process, a simple computational method for determining the absolute dose absorbed by the resin allowing for print time prediction is also proposed. This article is protected by copyright. All rights reserved.

4.
Adv Mater ; 34(7): e2106183, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34601774

RESUMO

An acoustic liquefaction approach to enhance the flow of yield stress fluids during Digital Light Processing (DLP)-based 3D printing is reported. This enhanced flow enables processing of ultrahigh-viscosity resins (µapp  > 3700 Pa s at shear rates γ ˙  = 0.01 s-1 ) based on silica particles in a silicone photopolymer. Numerical simulations of the acousto-mechanical coupling in the DLP resin feed system at different agitation frequencies predict local resin flow velocities exceeding 100 mm s-1 at acoustic transduction frequencies of 110 s-1 . Under these conditions, highly loaded particle suspensions (weight fractions, ϕ = 0.23) can be printed successfully in complex geometries. Such mechanically reinforced composites possess a tensile toughness 2000% greater than the neat photopolymer. Beyond an increase in processible viscosities, acoustophoretic liquefaction DLP (AL-DLP) creates a transient reduction in apparent viscosity that promotes resin recirculation and decreases viscous adhesion. As a result, acoustophoretic liquefaction Digital Light Processing (AL-DLP) improves the printed feature resolution by more than 25%, increases printable object sizes by over 50 times, and can build parts >3 × faster when compared to conventional methodologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA