Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 110(1): 63-77, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37741056

RESUMO

Little is known about the non-neuronal spermic cholinergic system, which may regulate sperm motility and the acrosome reaction initiation process. We investigated the presence of the key acetylcholine (ACh)-biosynthesizing enzyme, choline acetyltransferase (ChAT), and the acetylcholine-degrading enzymes, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and two ACh-receptors in human spermatozoa and seminal plasma. Fresh ejaculates were used for intra- and extracellular flow cytometric analysis of ChAT, AChE, BChE, and alpha-7-nicotinic and M1-muscarinic ACh-receptors in sperm. For determining the source of soluble enzymes, frozen seminal samples (n = 74) were selected on two bases: (1) from vasectomized (n = 37) and non-vasectomized (n = 37) subjects and (2) based on levels of alpha-glucosidase, fructose, or zinc to define sample subgroups with high or low fluid contribution from the epididymis and seminal vesicle, and prostate, respectively. Flow cytometric analyses revealed that ChAT was expressed intracellularly in essentially all spermatozoa. ChAT was also present in a readily membrane-detachable form at the extracellular membrane of at least 18% of the spermatozoa. These were also highly positive for intra- and extracellular BChE (>83%) and M1 (>84%) and α7 (>59%) ACh-receptors. Intriguingly, the sperm was negative for AChE. Analyses of seminal plasma revealed that spermatozoa and epididymides were major sources of soluble ChAT and BChE, whereas soluble AChE most likely originated from epididymides and seminal vesicles. Prostate had relatively minor contribution to the pool of the soluble enzymes in the seminal fluid. In conclusion, human spermatozoa exhibited a cholinergic phenotype and were one of the major sources of soluble ChAT and BChE in ejaculate. We also provide the first evidence for ChAT as an extracellularly membrane-anchored protein.


Assuntos
Acetilcolina , Acetilcolinesterase , Humanos , Masculino , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides , Espermatozoides/metabolismo , Colinérgicos
2.
BMC Neurol ; 24(1): 116, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594621

RESUMO

BACKGROUND: The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS: Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS: In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION: These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION: NCT03186989 since June 14, 2017.


Assuntos
Doença de Alzheimer , Criança , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Butirilcolinesterase/genética , Fenótipo
3.
Bioorg Chem ; 147: 107373, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653149

RESUMO

The escalating prevalence of Alzheimer's disease (AD) has prompted extensive research into potential therapeutic interventions, with a specific focus on molecular targets such as amyloid beta (Aß) and tau protein aggregation. In this study, a series of α-ketoamide derivatives was synthesized from ß,γ-unsaturated α-keto thioesters, achieving high purity and good yield. Thioflavin T based Aß aggregation assay identified four promising compounds (BD19, BD23, BD24, and BD27) that demonstrated significant inhibitory effects on Aß aggregation. BD23, selected for its better solubility (0.045 ± 0.0012 mg/ml), was further subjected to in vitro Parallel Artificial Membrane Permeability Assay to determine the Blood-Brain-Barrier permeability and emerged as BBB permeable with permeability rate (Pe) of 10.66 ± 8.11 × 10-6 cm/s. In addition to its Aß inhibitory properties, BD23 exhibited significant inhibition of heparin-induced tau aggregation and demonstrated non-toxicity in SHSY5Y cell lines. Subsequent in vivo assays were conducted, administering compound BD23 to an Aß induced mouse model of AD at various doses (1, 2, & 5 mg/kg). The results revealed a noteworthy enhancement in cognitive functions, particularly when BD23 was administered at a dosage of 5 mg/kg, comparable to the effects observed with the standard dose of Donepezil (DNP). In silico investigations, including molecular docking, molecular dynamics simulations, and Density Functional Theory calculations provided insights into BD23's interactions with the targets and electronic properties. These analyses contribute to the understanding of the therapeutic potential of the lead compounds BD23 which further pave the way for further exploration of its therapeutic potential in the context of AD.


Assuntos
Doença de Alzheimer , Amidas , Peptídeos beta-Amiloides , Relação Dose-Resposta a Droga , Agregados Proteicos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Animais , Camundongos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Simulação de Acoplamento Molecular , Proteínas tau/metabolismo , Proteínas tau/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Masculino
4.
Int J Mol Sci ; 23(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35682752

RESUMO

The native function of amyloid-ß (Aß) peptides is still unexplored. However, several recent reports suggest a prominent role of Aß peptides in acetylcholine homeostasis. To clarify this role of Aß, we have reported that Aß peptides at physiological concentrations can directly enhance the catalytic efficiency of the key cholinergic enzyme, choline acetyltransferase (ChAT), via an allosteric interaction. In the current study, we further aimed to elucidate the underlying ChAT-Aß interaction mechanism using in silico molecular docking and dynamics analysis. Docking analysis suggested two most probable binding clusters on ChAT for Aß40 and three for Aß42. Most importantly, the docking results were challenged with molecular dynamic studies of 100 ns long simulation in triplicates (100 ns × 3 = 300 ns) and were analyzed for RMSD, RMSF, RoG, H-bond number and distance, SASA, and secondary structure assessment performed together with principal component analysis and the free-energy landscape diagram, which indicated that the ChAT-Aß complex system was stable throughout the simulation time period with no abrupt motion during the evolution of the simulation across the triplicates, which also validated the robustness of the simulation study. Finally, the free-energy landscape analysis confirmed the docking results and demonstrated that the ChAT-Aß complexes were energetically stable despite the unstructured nature of C- and N-terminals in Aß peptides. Overall, this study supports the reported in vitro findings that Aß peptides, particularly Aß42, act as endogenous ChAT-Potentiating-Ligand (CPL), and thereby supports the hypothesis that one of the native biological functions of Aß peptides is the regulation of acetylcholine homeostasis.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Acetilcolina/metabolismo , Sítio Alostérico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Colina O-Acetiltransferase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
5.
Alzheimers Dement ; 16(7): 1031-1042, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32383816

RESUMO

INTRODUCTION: Several pharmacoepidemiological studies indicate that proton pump inhibitors (PPIs) significantly increase the risk of dementia. Yet, the underlying mechanism is not known. Here, we report the discovery of an unprecedented mode of action of PPIs that explains how PPIs may increase the risk of dementia. METHODS: Advanced in silico docking analyses and detailed enzymological assessments were performed on PPIs against the core-cholinergic enzyme, choline-acetyltransferase (ChAT), responsible for biosynthesis of acetylcholine (ACh). RESULTS: This report shows compelling evidence that PPIs act as inhibitors of ChAT, with high selectivity and unprecedented potencies that lie far below their in vivo plasma and brain concentrations. DISCUSSION: Given that accumulating evidence points at cholinergic dysfunction as a driving force of major dementia disorders, our findings mechanistically explain how prolonged use of PPIs may increase incidence of dementia. This call for restrictions for prolonged use of PPIs in elderly, and in patients with dementia or amyotrophic lateral sclerosis.


Assuntos
Colina O-Acetiltransferase/antagonistas & inibidores , Demência/epidemiologia , Inibidores da Bomba de Prótons/farmacologia , Simulação por Computador , Demência/induzido quimicamente , Humanos , Incidência , Simulação de Acoplamento Molecular , Inibidores da Bomba de Prótons/efeitos adversos , Risco
6.
Genet Mol Biol ; 43(4): e20190404, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33306773

RESUMO

The choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) are fundamental to neurophysiological functions of the central cholinergic system. We confirmed and quantified the presence of extracellular ChAT protein in human plasma and also characterized ChAT and VAChT polymorphisms, protein and activity levels in plasma of Alzheimer's disease patients (AD; N = 112) and in cognitively healthy controls (EC; N = 118). We found no significant differences in plasma levels of ChAT activity and protein between AD and EC groups. Although no differences were observed in plasma ChAT activity and protein concentration among ChEI-treated and untreated AD patients, ChAT activity and protein levels variance in plasma were higher among the rivastigmine-treated group (ChAT protein: p = 0.005; ChAT activity: p = 0.0002). Moreover, AD patients homozygous for SNP rs1880676 A allele exhibited higher levels of ChAT activity. Considering this is the first study to report the influence of genetic variability of CHAT locus over ChAT activity in AD patients plasma, it opens a new set of important questions on peripheral cholinergic signaling in AD.

7.
Gut ; 68(7): 1210-1223, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30228216

RESUMO

OBJECTIVE: To determine if human colonic neuromuscular functions decline with increasing age. DESIGN: Looking for non-specific changes in neuromuscular function, a standard burst of electrical field stimulation (EFS) was used to evoke neuronally mediated (cholinergic/nitrergic) contractions/relaxations in ex vivomuscle strips of human ascending and descending colon, aged 35-91 years (macroscopically normal tissue; 239 patients undergoing cancer resection). Then, to understand mechanisms of change, numbers and phenotype of myenteric neurons (30 306 neurons stained with different markers), densities of intramuscular nerve fibres (51 patients in total) and pathways involved in functional changes were systematically investigated (by immunohistochemistry and use of pharmacological tools) in elderly (≥70 years) and adult (35-60 years) groups. RESULTS: With increasing age, EFS was more likely to evoke muscle relaxation in ascending colon instead of contraction (linear regression: n=109, slope 0.49%±0.21%/year, 95% CI), generally uninfluenced by comorbidity or use of medications. Similar changes were absent in descending colon. In the elderly, overall numbers of myenteric and neuronal nitric oxide synthase-immunoreactive neurons and intramuscular nerve densities were unchanged in ascending and descending colon, compared with adults. In elderly ascending, not descending, colon numbers of cell bodies exhibiting choline acetyltransferase immunoreactivity increased compared with adults (5.0±0.6 vs 2.4±0.3 neurons/mm myenteric plexus, p=0.04). Cholinergically mediated contractions were smaller in elderly ascending colon compared with adults (2.1±0.4 and 4.1±1.1 g-tension/g-tissue during EFS; n=25/14; p=0.04); there were no changes in nitrergic function or in ability of the muscle to contract/relax. Similar changes were absent in descending colon. CONCLUSION: In ascending not descending colon, ageing impairs cholinergic function.


Assuntos
Colo Ascendente/patologia , Colo Ascendente/fisiopatologia , Colo Descendente/patologia , Colo Descendente/fisiopatologia , Contração Muscular/fisiologia , Fibras Nervosas/patologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Colo Ascendente/inervação , Colo Descendente/inervação , Estimulação Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Nervosas/fisiologia , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiopatologia , Técnicas de Cultura de Tecidos
8.
Brain ; 139(Pt 1): 174-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26525916

RESUMO

Amyloid-ß peptides, through highly sophisticated enzymatic machinery, are universally produced and released in an action potential synchronized manner into the interstitial fluids in the brain. Yet no native functions are attributed to amyloid-ß. The amyloid-ß hypothesis ascribes just neurotoxicity properties through build-up of soluble homomeric amyloid-ß oligomers or fibrillar deposits. Apolipoprotein-ε4 (APOE4) allele is the only confirmed genetic risk factor of sporadic Alzheimer's disease; once more it is unclear how it increases the risk of Alzheimer's disease. Similarly, central cholinergic signalling is affected selectively and early in the Alzheimer's disease brain, again why cholinergic neurons show this sensitivity is still unclear. However, the three main known Alzheimer's disease risk factors, advancing age, female gender and APOE4, have been linked to a high apolipoprotein-E and accumulation of the acetylcholine degrading enzyme, butyrylcholinesterase in cerebrospinal fluids of patients. Furthermore, numerous reports indicate that amyloid-ß interacts with butyrylcholinesterase and apolipoprotein-E. We have proposed that this interaction leads to formation of soluble ultrareactive acetylcholine-hydrolyzing complexes termed BAßACs, to adjust at demand both synaptic and extracellular acetylcholine signalling. This hypothesis predicted presence of acetylcholine-synthesizing enzyme, choline acetyltransferase in extracellular fluids to allow maintenance of equilibrium between breakdown and synthesis of acetylcholine through continuous in situ syntheses. A recent proof-of-concept study led to the discovery of this enzyme in the human extracellular fluids. We report here that apolipoprotein-E, in particular ε4 isoprotein acts as one of the strongest endogenous anti-amyloid-ß fibrillization agents reported in the literature. At biological concentrations, apolipoprotein-E prevented amyloid-ß fibrillization for at least 65 h. We show that amyloid-ß interacts readily in an apolipoprotein-facilitated manner with butyrylcholinesterase, forming highly stable and soluble complexes, BAßACs, which can be separated in their native states by sucrose density gradient technique. Enzymological analyses further evinced that amyloid-ß concentration dependently increased the acetylcholine-hydrolyzing capacity of cholinesterases. In silico biomolecular analysis further deciphered the allosteric amino acid fingerprint of the amyloid-ß-cholinesterase molecular interaction in formation of BAßACs. In the case of butyrylcholinesterase, the results indicated that amyloid-ß interacts with a putative activation site at the mouth of its catalytic tunnel, most likely leading to increased acetylcholine influx into the catalytic site, and thereby increasing the intrinsic catalytic rate of butyrylcholinesterase. In conclusion, at least one of the native physiological functions of amyloid-ß is allosteric modulation of the intrinsic catalytic efficiency of cholinesterases, and thereby regulation of synaptic and extrasynaptic cholinergic signalling. High apolipoprotein-E may pathologically alter the biodynamics of this amyloid-ß function.


Assuntos
Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Butirilcolinesterase/metabolismo , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Regulação Alostérica , Amiloide/metabolismo , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteínas E/líquido cefalorraquidiano , Butirilcolinesterase/líquido cefalorraquidiano , Humanos , Simulação de Acoplamento Molecular , Complexos Multiproteicos/líquido cefalorraquidiano , Vias Neurais , Isoformas de Proteínas
9.
J Immunol ; 192(3): 1138-53, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24353269

RESUMO

The complement system is activated in a wide spectrum of CNS diseases and is suggested to play a role in degenerative phenomena such as elimination of synaptic terminals. Still, little is known of mechanisms regulating complement activation in the CNS. Loss of synaptic terminals in the spinal cord after an experimental nerve injury is increased in the inbred DA strain compared with the PVG strain and is associated with expression of the upstream complement components C1q and C3, in the absence of membrane attack complex activation and neutrophil infiltration. To further dissect pathways regulating complement expression, we performed genome-wide expression profiling and linkage analysis in a large F2(DA × PVG) intercross, which identified quantitative trait loci regulating expression of C1qa, C1qb, C3, and C9. Unlike C1qa, C1qb, and C9, which all displayed distinct coregulation with different cis-regulated C-type lectins, C3 was regulated in a coexpression network immediately downstream of butyrylcholinesterase. Butyrylcholinesterase hydrolyses acetylcholine, which exerts immunoregulatory effects partly through TNF-α pathways. Accordingly, increased C3, but not C1q, expression was demonstrated in rat and mouse glia following TNF-α stimulation, which was abrogated in a dose-dependent manner by acetylcholine. These findings demonstrate new pathways regulating CNS complement expression using unbiased mapping in an experimental in vivo system. A direct link between cholinergic activity and complement activation is supported by in vitro experiments. The identification of distinct pathways subjected to regulation by naturally occurring genetic variability is of relevance for the understanding of disease mechanisms in neurologic conditions characterized by neuronal injury and complement activation.


Assuntos
Sistema Nervoso Central/metabolismo , Fibras Colinérgicas/fisiologia , Ativação do Complemento , Complemento C3/biossíntese , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes , Acetilcolina/farmacologia , Acetilcolina/fisiologia , Animais , Animais Congênicos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Lesões Encefálicas/imunologia , Lesões Encefálicas/fisiopatologia , Butirilcolinesterase/fisiologia , Células Cultivadas , Sistema Nervoso Central/química , Sistema Nervoso Central/patologia , Complemento C1q/biossíntese , Complemento C1q/genética , Complemento C3/genética , Denervação , Fatores de Transcrição Forkhead/metabolismo , Ligação Genética , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Locos de Características Quantitativas , Ratos , Rizotomia , Organismos Livres de Patógenos Específicos , Raízes Nervosas Espinhais/cirurgia , Sinaptofisina/análise , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/fisiologia
10.
Alzheimers Dement ; 11(11): 1316-28, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25676388

RESUMO

INTRODUCTION: The extensive loss of central cholinergic functions in Alzheimer's disease (AD) brain is linked to impaired nerve growth factor (NGF) signaling. The cardinal cholinergic biomarker is the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), which has recently been found in cerebrospinal fluid (CSF). The purpose of this study was to see if EC-NGF therapy will alter CSF levels of cholinergic biomarkers, ChAT, and acetylcholinesterase. METHOD: Encapsulated cell implants releasing NGF (EC-NGF) were surgically implanted bilaterally in the basal forebrain of six AD patients for 12 months and cholinergic markers in CSF were analyzed. RESULTS: Activities of both enzymes were altered after 12 months. In particular, the activity of soluble ChAT showed high correlation with cognition, CSF tau and amyloid-ß, in vivo cerebral glucose utilization and nicotinic binding sites, and morphometric and volumetric magnetic resonance imaging measures. DISCUSSION: A clear pattern of association is demonstrated showing a proof-of-principle effect on CSF cholinergic markers, suggestive of a beneficial EC-NGF implant therapy.


Assuntos
Acetilcolinesterase/líquido cefalorraquidiano , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/terapia , Colina O-Acetiltransferase/líquido cefalorraquidiano , Fator de Crescimento Neural/metabolismo , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/cirurgia , Transplante de Células , Cognição/fisiologia , Feminino , Terapia Genética/métodos , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fator de Crescimento Neural/genética , Cintilografia , Alicerces Teciduais , Resultado do Tratamento , Proteínas tau/líquido cefalorraquidiano
11.
J Cell Mol Med ; 18(9): 1874-88, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25109373

RESUMO

Adult neurogenesis is impaired by inflammatory processes, which are linked to altered cholinergic signalling and cognitive decline in Alzheimer's disease. In this study, we investigated how amyloid beta (Aß)-evoked inflammatory responses affect the generation of new neurons from human embryonic stem (hES) cells and the role of cholinergic signalling in regulating this process. The hES were cultured as neurospheres and exposed to fibrillar and oligomeric Aß(1-42) (Aßf, AßO) or to conditioned medium from human primary microglia activated with either Aß(1-42) or lipopolysaccharide. The neurospheres were differentiated for 29 days in vitro and the resulting neuronal or glial phenotypes were thereafter assessed. Secretion of cytokines and the enzymes acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and choline acetyltransferase (ChAT) involved in cholinergic signalling was measured in medium throughout the differentiation. We report that differentiating neurospheres released various cytokines, and exposure to Aßf, but not AßO, increased the secretion of IL-6, IL-1ß and IL-2. Aßf also influenced the levels of AChE, BuChE and ChAT in favour of a low level of acetylcholine. These changes were linked to an altered secretion pattern of cytokines. A different pattern was observed in microglia activated by Aßf, demonstrating decreased secretion of TNF-α, IL-1ß and IL-2 relative to untreated cells. Subsequent exposure of differentiating neurospheres to Aßf or to microglia-conditioned medium decreased neuronal differentiation and increased glial differentiation. We suggest that a basal physiological secretion of cytokines is involved in shaping the differentiation of neurospheres and that Aßf decreases neurogenesis by promoting a microenvironment favouring hypo-cholinergic signalling and gliogenesis.


Assuntos
Acetilcolina/fisiologia , Peptídeos beta-Amiloides/fisiologia , Citocinas/metabolismo , Neurogênese , Neurônios/fisiologia , Fragmentos de Peptídeos/fisiologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Amiloide/fisiologia , Butirilcolinesterase/metabolismo , Linhagem Celular , Colina O-Acetiltransferase/metabolismo , Humanos , Microglia/metabolismo , Cultura Primária de Células , Transdução de Sinais , Esferoides Celulares/fisiologia
12.
Alzheimers Dement ; 10(5): 530-540.e1, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23978325

RESUMO

Apolipoprotein E ε4 allele (APOE ε4) increases the apolipoprotein E (apoE) protein levels in Alzheimer's disease (AD) cerebrospinal fluid (CSF). Thus, we hypothesized that apoE levels were also associated with the APOE genotype, and amyloid-ß (Aß)-associated clinical, functional, and imaging parameters in patients with Lewy body-associated disorders (LBD). Indeed, similar to AD, patients with LBD displayed high CSF apoE levels (greatest in patients with dementia with LBD), and this was linked to APOE ε4. High CSF apoE protein correlated positively with CSF soluble amyloid precursor protein, total tau, and cortical and striatal Pittsburgh compound B retention; and correlated negatively with CSF Aß42, cognitive tests scores, and glucose uptake ratio in the temporal and parietal cortices. APOE ε4-triggered accumulation of apoE in CSF is related to Aß-associated clinical and functional imaging parameters in LBD. Accordingly, therapeutic strategies aimed at reducing apoE levels in the brain should be explored not only in AD but also in LBD, particularly when accompanied with dementia.


Assuntos
Apolipoproteínas E/líquido cefalorraquidiano , Doença por Corpos de Lewy/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Precursor de Proteína beta-Amiloide/líquido cefalorraquidiano , Compostos de Anilina , Apolipoproteínas E/genética , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Radioisótopos de Carbono , Estudos de Coortes , Feminino , Fluordesoxiglucose F18 , Glucose/metabolismo , Humanos , Doença por Corpos de Lewy/diagnóstico por imagem , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/psicologia , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tiazóis , Proteínas tau/líquido cefalorraquidiano
13.
ACS Chem Neurosci ; 14(4): 749-765, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36749117

RESUMO

Various pharmacoepidemiological investigational studies have indicated that Proton Pump Inhibitors (PPIs) may increase the likelihood of developing Alzheimer's disease (AD) and non-AD related dementias. Previously, we have reported the inhibition of the acetylcholine biosynthesizing enzyme choline acetyltransferase (ChAT) by PPIs, for which omeprazole, lansoprazole, and pantoprazole exhibited IC50 values of 0.1, 1.5, and 5.3 µM, respectively. In this study we utilize a battery of computational tools to perceive a mechanistic insight into the molecular interaction of PPIs with the ChAT binding pocket that may further help in designing novel ChAT ligands. Various in-silico tools make it possible for us to elucidate the binding interaction, conformational stability, and dynamics of the protein-ligand complexes within a 200 ns time frame. Further, the binding free energies for the PPI-ChAT complexes were explored. The results suggest that the PPIs exhibit equal or higher binding affinity toward the ChAT catalytic tunnel and are stable throughout the simulated time and that the pyridine ring of the PPIs interacts primarily with the catalytic residue His324. A free energy landscape analysis showed that the folding process was linear, and the residue interaction network analysis can provide insight into the roles of various amino acid residues in stabilization of the PPIs in the ChAT binding pocket. As a major factor for the onset of Alzheimer's disease is linked to cholinergic dysfunction, our previous and the present findings give clear insight into the PPI interaction with ChAT. The scaffold can be further simplified to develop novel ChAT ligands, which can also be used as ChAT tracer probes for the diagnosis of cholinergic dysfunction and to initiate timely therapeutic interventions to prevent or delay the progression of AD.


Assuntos
Doença de Alzheimer , Inibidores da Bomba de Prótons , Humanos , Inibidores da Bomba de Prótons/farmacologia , Colina O-Acetiltransferase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Omeprazol/farmacologia , Colinérgicos
14.
Alzheimers Res Ther ; 15(1): 137, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596686

RESUMO

BACKGROUND: Alzheimer's disease (AD) is an age-related disease characterized by altered cognition, neuroinflammation, and neurodegeneration against which there is presently no effective cure. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin involved in the learning and memory process, with a crucial role in synaptic plasticity and neuronal survival. Several findings support that a reduced BDNF expression in the human brain is associated with AD pathogenesis. BDNF has been proposed as a potential therapy for AD, but BDNF has low brain penetration. In this study, we used an innovative encapsulated cell biodelivery (ECB) device, containing genetically modified cells capable of releasing BDNF and characterized its feasibility and therapeutic effects in the novel App knock-in AD mouse model (AppNL-G-F). METHODS: ECB's containing human ARPE-19 cells genetically modified to release BDNF (ECB-BDNF devices) were stereotactically implanted bilaterally into hippocampus of 3-month-old AppNL-G-F mice. The stability of BDNF release and its effect on AD pathology were evaluated after 1, 2-, and 4-months post-implantation by immunohistochemical and biochemical analyses. Exploratory and memory performance using elevated plus maze (EPM) and Y-maze test were performed in the 4-months treatment group. Immunological reaction towards ECB-BDNF devices were studied under ex vivo and in vivo settings. RESULTS: The surgery and the ECB-BDNF implants were well tolerated without any signs of unwanted side effects or weight loss. ECB-BDNF devices did not induce host-mediated immune response under ex vivo set-up but showed reduced immune cell attachment when explanted 4-months post-implantation. Elevated BDNF staining around ECB-BDNF device proximity was detected after 1, 2, and 4 months treatment, but the retrieved devices showed variable BDNF release. A reduction of amyloid-ß (Aß) plaque deposition was observed around ECB-BDNF device proximity after 2-months of BDNF delivery. CONCLUSIONS: The result of this study supports the use of ECB device as a promising drug-delivery approach to locally administer BBB-impermeable factors for treating neurodegenerative conditions like AD. Optimization of the mouse-sized devices to reduce variability of BDNF release is needed to employ the ECB platform in future pre-clinical research and therapy development studies.


Assuntos
Doença de Alzheimer , Fator Neurotrófico Derivado do Encéfalo , Sistemas de Liberação de Medicamentos , Animais , Camundongos , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Estudos de Viabilidade , Sistemas de Liberação de Medicamentos/métodos
15.
Brain ; 134(Pt 1): 301-17, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21149866

RESUMO

The accumulation of ß-amyloid in the brain is an early event in Alzheimer's disease. This study presents the first patient with Alzheimer's disease who underwent positron emission tomography imaging with the amyloid tracer, Pittsburgh Compound B to visualize fibrillar ß-amyloid in the brain. Here we relate the clinical progression, amyloid and functional brain positron emission tomography imaging with molecular neuropathological alterations at autopsy to gain new insight into the relationship between ß-amyloid accumulation, inflammatory processes and the cholinergic neurotransmitter system in Alzheimer's disease brain. The patient underwent positron emission tomography studies with (18)F-fluorodeoxyglucose three times (at ages 53, 56 and 58 years) and twice with Pittsburgh Compound B (at ages 56 and 58 years), prior to death at 61 years of age. The patient showed a pronounced decline in cerebral glucose metabolism and cognition during disease progression, while Pittsburgh Compound B retention remained high and stable at follow-up. Neuropathological examination of the brain at autopsy confirmed the clinical diagnosis of pure Alzheimer's disease. A comprehensive neuropathological investigation was performed in nine brain regions to measure the regional distribution of ß-amyloid, neurofibrillary tangles and the levels of binding of (3)H-nicotine and (125)I-α-bungarotoxin to neuronal nicotinic acetylcholine receptor subtypes, (3)H-L-deprenyl to activated astrocytes and (3)H-PK11195 to microglia, as well as butyrylcholinesterase activity. Regional in vivo (11)C-Pittsburgh Compound B-positron emission tomography retention positively correlated with (3)H-Pittsburgh Compound B binding, total insoluble ß-amyloid, and ß-amyloid plaque distribution, but not with the number of neurofibrillary tangles measured at autopsy. There was a negative correlation between regional fibrillar ß-amyloid and levels of (3)H-nicotine binding. In addition, a positive correlation was found between regional (11)C-Pittsburgh Compound B positron emission tomography retention and (3)H-Pittsburgh Compound B binding with the number of glial fibrillary acidic protein immunoreactive cells, but not with (3)H-L-deprenyl and (3)H-PK-11195 binding. In summary, high (11)C-Pittsburgh Compound B positron emission tomography retention significantly correlates with both fibrillar ß-amyloid and losses of neuronal nicotinic acetylcholine receptor subtypes at autopsy, suggesting a closer involvement of ß-amyloid pathology with neuronal nicotinic acetylcholine receptor subtypes than with inflammatory processes.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Progressão da Doença , Tomografia por Emissão de Pósitrons/métodos , Tiazóis , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/diagnóstico por imagem , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Testes Neuropsicológicos , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/metabolismo , Placa Amiloide/patologia
16.
Front Aging Neurosci ; 14: 876019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693340

RESUMO

Background: Cholinergic drugs are the most commonly used drugs for the treatment of Alzheimer's disease (AD). Therefore, a better understanding of the cholinergic system and its relation to both AD-related biomarkers and cognitive functions is of high importance. Objectives: To evaluate the relationships of cerebrospinal fluid (CSF) cholinergic enzymes with markers of amyloidosis, neurodegeneration, neurofibrillary tangles, inflammation and performance on verbal episodic memory in a memory clinic cohort. Methods: In this cross-sectional study, 46 cholinergic drug-free subjects (median age = 71, 54% female, median MMSE = 28) were recruited from an Icelandic memory clinic cohort targeting early stages of cognitive impairment. Enzyme activity of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) was measured in CSF as well as levels of amyloid-ß1-42 (Aß42), phosphorylated tau (P-tau), total-tau (T-tau), neurofilament light (NFL), YKL-40, S100 calcium-binding protein B (S100B), and glial fibrillary acidic protein (GFAP). Verbal episodic memory was assessed with the Rey Auditory Verbal Learning (RAVLT) and Story tests. Results: No significant relationships were found between CSF Aß42 levels and AChE or BuChE activity (p > 0.05). In contrast, T-tau (r = 0.46, p = 0.001) and P-tau (r = 0.45, p = 0.002) levels correlated significantly with AChE activity. Although neurodegeneration markers T-tau and NFL did correlate with each other (r = 0.59, p < 0.001), NFL did not correlate with AChE (r = 0.25, p = 0.09) or BuChE (r = 0.27, p = 0.06). Inflammation markers S100B and YKL-40 both correlated significantly with AChE (S100B: r = 0.43, p = 0.003; YKL-40: r = 0.32, p = 0.03) and BuChE (S100B: r = 0.47, p < 0.001; YKL-40: r = 0.38, p = 0.009) activity. A weak correlation was detected between AChE activity and the composite score reflecting verbal episodic memory (r = -0.34, p = 0.02). LASSO regression analyses with a stability approach were performed for the selection of a set of measures best predicting cholinergic activity and verbal episodic memory score. S100B was the predictor with the highest model selection frequency for both AChE (68%) and BuChE (73%) activity. Age (91%) was the most reliable predictor for verbal episodic memory, with selection frequency of both cholinergic enzymes below 10%. Conclusions: Results indicate a relationship between higher activity of the ACh-degrading cholinergic enzymes with increased neurodegeneration, neurofibrillary tangles and inflammation in the stages of pre- and early symptomatic dementia, independent of CSF Aß42 levels.

17.
Front Aging Neurosci ; 14: 756687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557841

RESUMO

Background: Basal forebrain cholinergic neurons are dependent on nerve growth factor (NGF) for growth and survival and these cells are among the first to degenerate in Alzheimer's disease (AD). Targeted delivery of NGF has been suggested as a potential therapy for AD. This hypothesis was tested in a clinical trial with encapsulated cell biodelivery of NGF (NGF-ECB) in AD patients. Three of six patients showed improved biomarkers for cognition by the end of the study. Here, we report on the effects of targeted delivery of NGF on human resting EEG. Materials and methods: NGF-ECB implants were implanted bilaterally in the basal forebrain of six AD patients for 12 months. EEG recordings and quantitative analysis were performed at baseline, 3 and 12 months of NGF delivery, and analyzed for correlation with changes in Mini-mental state examination (MMSE) and levels of the cholinergic marker choline acetyltransferase (ChAT) in cerebrospinal fluid (CSF). Results: We found significant correlations between the topographic variance of EEG spectral power at the three study points (baseline, 3 and 12 months) and changes in MMSE and CSF ChAT. This possible effect of NGF was identified in a narrow window of alpha frequency 10-11.5 Hz, where a stabilization in MMSE score during treatment was related to an increase in EEG alpha power. A similar relation was observed between the alpha power and ChAT. More theta power at 6.5 Hz was on the contrary associated with a decrease in CSF ChAT during the trial period. Conclusion: In this exploratory study, there was a positive correlative pattern between physiological high-frequency alpha activity and stabilization in MMSE and increase in CSF ChAT in AD patients receiving targeted delivery of NGF to the cholinergic basal forebrain.

18.
Front Aging Neurosci ; 13: 704583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512307

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is the most prevalent form of dementia with symptoms of deteriorating cognitive functions and memory loss, partially as a result of a decrease in cholinergic neurotransmission. The disease is incurable and treatment with cholinesterase inhibitors (ChEIs) is symptomatic. Choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine (ACh), has been proven recently to be present in both cerebrospinal fluid (CSF) and plasma. As ChAT plays a role in regulating the extracellular ACh levels, it may have an impact on prognosis and cognitive performance in AD patients. OBJECTIVES: To measure ChAT activity and its protein concentration in CSF and plasma from patients with AD, mild cognitive impairment (MCI), or Subjective cognitive impairment (SCI). METHODS: Plasma and CSF samples were obtained from 21 AD, 32 MCI, and 30 SCI patients. The activity and protein levels of ChAT and acetylcholinesterase (AChE), the enzyme catalyzing the hydrolysis of ACh, were analyzed using an integrated activity and protein concentration ELISA-like assay. A Cholinergic Index was calculated as the ratio of ChAT to AChE activities in CSF. The data were analyzed in relation to dementia biomarkers and cognitive performance of the patients. RESULTS: The CSF ChAT activity was significantly higher (55-67%) in MCI patients compared to AD and SCI cases. The CSF Cholinergic Index was 41 and 22% lower in AD patients than in MCI and SCI subjects, respectively. This index correlated positively with the Aß42/p-tau ratio in CSF in SCI but negatively with that in AD and MCI. The ChAT activity and protein levels in plasma exhibited significant differences with the pattern of AD>>M C I>SCI. CONCLUSION: This is the first study investigating soluble levels of the key cholinergic enzyme, ChAT, in both plasma and CSF of individuals at different clinical stages of dementia. Although further validation is needed, the overall pattern of the results suggests that in the continuum of AD, the cholinergic signaling exhibits an inverse U-shape dynamic of changes in the brain that greatly differs from the changes observed in the plasma compartment.

19.
Front Aging Neurosci ; 13: 714186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34475820

RESUMO

Gradual decline in cholinergic transmission and cognitive function occurs during normal aging, whereas pathological loss of cholinergic function is a hallmark of different types of dementia, including Alzheimer's disease (AD), Lewy body dementia (LBD), and Parkinson's disease dementia (PDD). Glial cell line-derived neurotrophic factor (GDNF) is known to modulate and enhance the dopamine system. However, how endogenous GDNF influences brain cholinergic transmission has remained elusive. In this study, we explored the effect of a twofold increase in endogenous GDNF (Gdnf hypermorphic mice, Gdnf wt/hyper) on cholinergic markers and cognitive function upon aging. We found that Gdnf wt/hyper mice resisted an overall age-associated decline in the cholinergic index observed in the brain of Gdnf wt/wt animals. Biochemical analysis revealed that the level of nerve growth factor (NGF), which is important for survival and function of central cholinergic neurons, was significantly increased in several brain areas of old Gdnf wt/hyper mice. Analysis of expression of genes involved in cholinergic transmission in the cortex and striatum confirmed modulation of cholinergic pathways by GDNF upon aging. In line with these findings, Gdnf wt/hyper mice did not undergo an age-related decline in cognitive function in the Y-maze test, as observed in the wild type littermates. Our results identify endogenous GDNF as a potential modulator of cholinergic transmission and call for future studies on endogenous GDNF function in neurodegenerative disorders characterized by cognitive impairments, including AD, LBD, and PDD.

20.
Biochem Pharmacol ; 182: 114212, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866455

RESUMO

Recent studies have linked prolonged use of the most commonly prescribed proton pump inhibitors (PPIs) with declined human sperm function and infertility. Here, we report for the first time the most plausible underlying mechanism for this unwarranted secondary mode of action. We followed up on a recent serendipitous discovery in our laboratory regarding PPIs' off-target action and performed detailed pharmacodynamic analyses by combining in silico and in vitro studies to determine the off-target effect of one of the most commonly used PPI, esomeprazole, on the key human acetylcholine biosynthesizing enzyme, choline acetyltransferase (ChAT; EC 2.3.1.6). A pivotal enzyme in the spermic cholinergic system that governs the sperm motility, concentration and quality. Our results were conclusive and showed that both the racemic form, omeprazole and its pure S-enantiomer, esomeprazole, acted as potent mixed-competitive inhibitor of human ChAT with a global inhibition constant (Ki) of 88 nM (95%CI: 10-167 nM) for esomeprazole and 178 nM (95%CI: 140-230 nM) for the racemic drug omeprazole. Most importantly, esomeprazole substantially reduces both total number of motile sperm (by 36%, p < 0.001; and 21% p < 0.0001, at 10 and 100 nM, respectively) as well as the total number of sperm with progressive motility (by 42% p < 0.0016 and by 26% p < 0.0001, respectively) after 60 min relative to 20 min incubation in our ex vivo functional assay performed on ejaculated human sperm. In conclusion, this study presents a completely new perspective regarding PPIs secondary mode of action/unwarranted side effects and calls for further mechanistic and larger clinical studies to elucidate the role of PPIs in infertility.


Assuntos
Colina O-Acetiltransferase/metabolismo , Esomeprazol/metabolismo , Esomeprazol/farmacologia , Inibidores da Bomba de Prótons/metabolismo , Inibidores da Bomba de Prótons/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Adulto , Colina/metabolismo , Colina/farmacologia , Colina O-Acetiltransferase/química , Relação Dose-Resposta a Droga , Humanos , Masculino , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA