Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Bioinformatics ; 17(1): 520, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927171

RESUMO

BACKGROUND: The binary similarity and dissimilarity measures have critical roles in the processing of data consisting of binary vectors in various fields including bioinformatics and chemometrics. These metrics express the similarity and dissimilarity values between two binary vectors in terms of the positive matches, absence mismatches or negative matches. To our knowledge, there is no published work presenting a systematic way of finding an appropriate equation to measure binary similarity that performs well for certain data type or application. A proper method to select a suitable binary similarity or dissimilarity measure is needed to obtain better classification results. RESULTS: In this study, we proposed a novel approach to select binary similarity and dissimilarity measures. We collected 79 binary similarity and dissimilarity equations by extensive literature search and implemented those equations as an R package called bmeasures. We applied these metrics to quantify the similarity and dissimilarity between herbal medicine formulas belonging to the Indonesian Jamu and Japanese Kampo separately. We assessed the capability of binary equations to classify herbal medicine pairs into match and mismatch efficacies based on their similarity or dissimilarity coefficients using the Receiver Operating Characteristic (ROC) curve analysis. According to the area under the ROC curve results, we found Indonesian Jamu and Japanese Kampo datasets obtained different ranking of binary similarity and dissimilarity measures. Out of all the equations, the Forbes-2 similarity and the Variant of Correlation similarity measures are recommended for studying the relationship between Jamu formulas and Kampo formulas, respectively. CONCLUSIONS: The selection of binary similarity and dissimilarity measures for multivariate analysis is data dependent. The proposed method can be used to find the most suitable binary similarity and dissimilarity equation wisely for a particular data. Our finding suggests that all four types of matching quantities in the Operational Taxonomic Unit (OTU) table are important to calculate the similarity and dissimilarity coefficients between herbal medicine formulas. Also, the binary similarity and dissimilarity measures that include the negative match quantity d achieve better capability to separate herbal medicine pairs compared to equations that exclude d.


Assuntos
Plantas Medicinais/classificação , Análise por Conglomerados , Medicina Herbária/métodos , Indonésia , Japão , Curva ROC
2.
Plant Cell Physiol ; 53(2): e1, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22123792

RESUMO

A database (DB) describing the relationships between species and their metabolites would be useful for metabolomics research, because it targets systematic analysis of enormous numbers of organic compounds with known or unknown structures in metabolomics. We constructed an extensive species-metabolite DB for plants, the KNApSAcK Core DB, which contains 101,500 species-metabolite relationships encompassing 20,741 species and 50,048 metabolites. We also developed a search engine within the KNApSAcK Core DB for use in metabolomics research, making it possible to search for metabolites based on an accurate mass, molecular formula, metabolite name or mass spectra in several ionization modes. We also have developed databases for retrieving metabolites related to plants used for a range of purposes. In our multifaceted plant usage DB, medicinal/edible plants are related to the geographic zones (GZs) where the plants are used, their biological activities, and formulae of Japanese and Indonesian traditional medicines (Kampo and Jamu, respectively). These data are connected to the species-metabolites relationship DB within the KNApSAcK Core DB, keyed via the species names. All databases can be accessed via the website http://kanaya.naist.jp/KNApSAcK_Family/. KNApSAcK WorldMap DB comprises 41,548 GZ-plant pair entries, including 222 GZs and 15,240 medicinal/edible plants. The KAMPO DB consists of 336 formulae encompassing 278 medicinal plants; the JAMU DB consists of 5,310 formulae encompassing 550 medicinal plants. The Biological Activity DB consists of 2,418 biological activities and 33,706 pairwise relationships between medicinal plants and their biological activities. Current statistics of the binary relationships between individual databases were characterized by the degree distribution analysis, leading to a prediction of at least 1,060,000 metabolites within all plants. In the future, the study of metabolomics will need to take this huge number of metabolites into consideration.


Assuntos
Biologia Computacional , Bases de Dados Factuais , Metabolômica/métodos , Plantas Medicinais/metabolismo , Geografia , Indonésia , Internet , Japão , Medicina Tradicional do Leste Asiático , Ferramenta de Busca
3.
Food Chem ; 221: 1717-1722, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979152

RESUMO

HPLC fingerprint analysis combined with chemometrics was developed to discriminate between the red and the white rice bran grown in Indonesia. The major component in rice bran is γ-oryzanol which consisted of 4 main compounds, namely cycloartenol ferulate, cyclobranol ferulate, campesterol ferulate and ß-sitosterol ferulate. Separation of these four compounds along with other compounds was performed using C18 and methanol-acetonitrile with gradient elution system. By using these intensity variations, principal component and discriminant analysis were performed to discriminate the two samples. Discriminant analysis was successfully discriminated the red from the white rice bran with predictive ability of the model showed a satisfactory classification for the test samples. The results of this study indicated that the developed method was suitable as quality control method for rice bran in terms of identification and discrimination of the red and the white rice bran.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Oryza/química , Fenilpropionatos/análise , Colesterol/análogos & derivados , Colesterol/análise , Indonésia , Fitosteróis/análise , Sitosteroides/análise , Triterpenos/análise
4.
Biomed Res Int ; 2014: 831751, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24804251

RESUMO

Indonesia has the largest medicinal plant species in the world and these plants are used as Jamu medicines. Jamu medicines are popular traditional medicines from Indonesia and we need to systemize the formulation of Jamu and develop basic scientific principles of Jamu to meet the requirement of Indonesian Healthcare System. We propose a new approach to predict the relation between plant and disease using network analysis and supervised clustering. At the preliminary step, we assigned 3138 Jamu formulas to 116 diseases of International Classification of Diseases (ver. 10) which belong to 18 classes of disease from National Center for Biotechnology Information. The correlation measures between Jamu pairs were determined based on their ingredient similarity. Networks are constructed and analyzed by selecting highly correlated Jamu pairs. Clusters were then generated by using the network clustering algorithm DPClusO. By using matching score of a cluster, the dominant disease and high frequency plant associated to the cluster are determined. The plant to disease relations predicted by our method were evaluated in the context of previously published results and were found to produce around 90% successful predictions.


Assuntos
Medicina Tradicional , Plantas Medicinais , Análise por Conglomerados , Bases de Dados Factuais , Humanos , Indonésia
5.
Curr Comput Aided Drug Des ; 9(1): 46-59, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23106776

RESUMO

Indonesian herbal medicines made from mixtures of several plants are called "Jamu." The efficacy of a particular Jamu is determined by its ingredients i.e. the composition of the plants. Thus, we modeled the ingredients of Jamu formulas using Partial Least Squares Discriminant Analysis (PLS-DA) in order to predict their efficacy. The plants used in each Jamu medicine served as the predictors, whereas the efficacy of each Jamu provided the responses. Utilizing response predictions obtained from PLS-DA, we predicted the efficacies of Jamu formulations using two methods: maximum response prediction and maximum probability. In predictions of Jamu efficacy, the maximum response prediction method produced a smaller error than that the maximum probability method. Furthermore, utilizing the PLS-DA coefficient matrix, we determined the efficacy for which a plant is most useful, based on its largest coefficients.


Assuntos
Preparações de Plantas/química , Preparações de Plantas/farmacologia , Plantas Medicinais/química , Análise Discriminante , Humanos , Indonésia , Análise dos Mínimos Quadrados , Modelos Biológicos
6.
Comput Struct Biotechnol J ; 4: e201301010, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24688691

RESUMO

Molecular biological data has rapidly increased with the recent progress of the Omics fields, e.g., genomics, transcriptomics, proteomics and metabolomics that necessitates the development of databases and methods for efficient storage, retrieval, integration and analysis of massive data. The present study reviews the usage of KNApSAcK Family DB in metabolomics and related area, discusses several statistical methods for handling multivariate data and shows their application on Indonesian blended herbal medicines (Jamu) as a case study. Exploration using Biplot reveals many plants are rarely utilized while some plants are highly utilized toward specific efficacy. Furthermore, the ingredients of Jamu formulas are modeled using Partial Least Squares Discriminant Analysis (PLS-DA) in order to predict their efficacy. The plants used in each Jamu medicine served as the predictors, whereas the efficacy of each Jamu provided the responses. This model produces 71.6% correct classification in predicting efficacy. Permutation test then is used to determine plants that serve as main ingredients in Jamu formula by evaluating the significance of the PLS-DA coefficients. Next, in order to explain the role of plants that serve as main ingredients in Jamu medicines, information of pharmacological activity of the plants is added to the predictor block. Then N-PLS-DA model, multiway version of PLS-DA, is utilized to handle the three-dimensional array of the predictor block. The resulting N-PLS-DA model reveals that the effects of some pharmacological activities are specific for certain efficacy and the other activities are diverse toward many efficacies. Mathematical modeling introduced in the present study can be utilized in global analysis of big data targeting to reveal the underlying biology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA