Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Environ Res ; 229: 115935, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080278

RESUMO

The current investigation aimed at bimetallic gold-silver nanoparticles (Au/Ag NPs), here called BM-GS NPs, synthesis using sericin protein as the reducing agent in an easy, cost-effective, and sustainable way. The obtained BM-GS NPs were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDS), atomic force microscopy (AFM), Dynamic light scattering (DLS) and Zeta potential, X-ray Powder Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and Thermogravimetric analysis followed by evaluation of its multitherapeutic and photocatalytic degradation potentials. The TEM analysis revealed its spherical nature and the EDS result displayed the presence of both Ag and Au elements, confirming the synthesis of BM-GS NPs. The XRD pattern verified the crystalline nature of the nanoparticles (NPs). The DLS analysis showed an average size of 86.08 d nm and the zeta potential showed a highly negative value (-26.3 mV) which specifies that the generated bimetallic NPs are stable. The BM-GS NPs exhibited positive wound healing potential (with 63.38% of wound closure rate at 25 µg/ml, as compared to 54.42% by the untreated control) with very negligible toxicity effect on the cell viability of the normal keratinocyte cells. It also demonstrated promising antioxidant properties with 65.00%, 69.23%, and 63.03% activity at 100 µg/ml concentration for ABTS (2, 2-azinobis) (3-ethylbenzothiazoline-6-sulfonic acid)), DPPH (1, 1 diphenyl-2-picrylhydrazyl) and SOD (superoxide dismutase enzyme) assays respectively, antidiabetic potential (with a significantly high α-glucosidase inhibition potential of 99.69% at 10µg/ml concentration and 62.11% of α-amylase enzyme inhibition at 100 µg/ml concentration) and moderate tyrosinase inhibitory potential (with 17.09% at 100 µg/ml concentration). Besides, it displayed reasonable antibacterial potential with the diameter of zone of inhibition ranging between 10.89 and 12.39 mm. Further, its antibacterial mode of action reveals that its effects could be due to being very smaller, the NPs could have penetrated inside the cellular membrane thereby causing rupture and damage to the interior materials leading to cellular lysis. The photocatalytic evaluation showed that synthesized BM-GS NPs have the efficiency of degrading methylene blue dye by 34.70% within 3 h of treatment. The above findings revealed the multi-therapeutic efficacy of the sericin globular protein-mediated BM-GS NPs and its potential future applications in the cosmetics and food sector and environmental contamination management industries.


Assuntos
Nanopartículas Metálicas , Sericinas , Espectroscopia de Infravermelho com Transformada de Fourier , Prata/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Ouro/química , Antibacterianos/farmacologia , Antibacterianos/química
2.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298428

RESUMO

In recent times, numerous natural materials have been used for the fabrication of gold nanoparticles (AuNPs). Natural resources used for the synthesis of AuNPs are more environment friendly than chemical resources. Sericin is a silk protein that is discarded during the degumming process for obtaining silk. The current research used sericin silk protein waste materials as the reducing agent for the manufacture of gold nanoparticles (SGNPs) by a one-pot green synthesis method. Further, the antibacterial effect and antibacterial mechanism of action, tyrosinase inhibition, and photocatalytic degradation potential of these SGNPs were evaluated. The SGNPs displayed positive antibacterial activity (8.45-9.58 mm zone of inhibition at 50 µg/disc) against all six tested foodborne pathogenic bacteria, namely, Enterococcus feacium DB01, Staphylococcus aureus ATCC 13565, Listeria monocytogenes ATCC 33090, Escherichia coli O157:H7 ATCC 23514, Aeromonas hydrophila ATCC 7966, and Pseudomonas aeruginosa ATCC 27583. The SGNPs also exhibited promising tyrosinase inhibition potential, with 32.83% inhibition at 100 µg/mL concentration as compared to 52.4% by Kojic acid, taken as a reference standard compound. The SGNPs also displayed significant photocatalytic degradation effects, with 44.87% methylene blue dye degradation after 5 h of incubation. Moreover, the antibacterial mode of action of the SGNPs was also investigated against E. coli and E. feacium, and the results show that due to the small size of the nanomaterials, they could have adhered to the surface of the bacterial pathogens, and could have released more ions and dispersed in the bacterial cell wall surrounding environment, thereby disrupting the cell membrane and ROS production, and subsequently penetrating the bacterial cells, resulting in lysis or damage to the cell by the process of structural damage to the membrane, oxidative stress, and damage to the DNA and bacterial proteins. The overall outcome of the current investigation concludes the positive effects of the obtained SGNPs and their prospective applications as a natural antibacterial agent in cosmetics, environmental, and foodstuff industries, and for the management of environmental contagion.


Assuntos
Escherichia coli O157 , Nanopartículas Metálicas , Sericinas , Ouro/farmacologia , Ouro/química , Monofenol Mono-Oxigenase , Sericinas/farmacologia , Sericinas/química , Nanopartículas Metálicas/química , Antibacterianos/química , Bactérias , Seda/farmacologia , Testes de Sensibilidade Microbiana
3.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902381

RESUMO

There is growing concern about the use of plastic in packaging for food materials, as this results in increased plastic waste materials in the environment. To counter this, alternative sources of packaging materials that are natural and based on eco-friendly materials and proteins have been widely investigated for their potential application in food packaging and other industries of the food sector. Sericin, a silk protein that is usually discarded in large quantities by the sericulture and textile industries during the degumming process of manufacturing silk from silk cocoons, can be explored for its application in food packaging and in other food sectors as a functional food and component of food items. Hence, its repurposing can result in reduced economic costs and environmental waste. Sericin extracted from silk cocoon possesses several useful amino acids, such as aspartic acid, glycine, and serine. Likewise, sericin is strongly hydrophilic, a property that confers effective biological and biocompatible characteristics, including antibacterial, antioxidant, anticancer, and anti-tyrosinase properties. When used in combination with other biomaterials, sericin has proved to be effective in the manufacture of films or coating or packaging materials. In this review, the characteristics of sericin materials and their potential application in food-sector industries are discussed in detail.


Assuntos
Bombyx , Sericinas , Animais , Sericinas/química , Seda/química , Materiais Biocompatíveis/química , Monofenol Mono-Oxigenase/metabolismo , Indústria Alimentícia , Bombyx/metabolismo
4.
Rev Endocr Metab Disord ; 22(2): 421-451, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33052523

RESUMO

About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote ß-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3ß), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/terapia , Humanos , Inflamassomos/metabolismo , Nanotecnologia , Estresse Oxidativo
5.
J Nanobiotechnology ; 19(1): 30, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482828

RESUMO

BACKGROUND: The advances in products based on nanotechnology have directed extensive research on low-cost, biologically compatible, and easily degradable materials. MAIN BODY: Sericin (SER) is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). SER is a biocompatible material with economic viability, which can be easily functionalized due to its potential crosslink reactions. Also, SER has inherent biological properties, which makes possible its use as a component of pharmaceutical formulations with several biomedical applications, such as anti-tumor, antimicrobials, antioxidants and as scaffolds for tissue repair as well as participating in molecular mechanisms attributed to the regulation of transcription factors, reduction of inflammatory signaling molecules, stimulation of apoptosis, migration, and proliferation of mesenchymal cells. CONCLUSION: In this review, the recent innovations on SER-based nano-medicines (nanoparticles, micelles, films, hydrogels, and their hybrid systems) and their contributions for non-conventional therapies are discussed considering different molecular mechanisms for promoting their therapeutic applications.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Nanoestruturas/química , Sericinas/química , Sericinas/uso terapêutico , Animais , Materiais Biocompatíveis/isolamento & purificação , Materiais Biocompatíveis/farmacologia , Bombyx/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanomedicina/métodos , Nanotecnologia/métodos , Sericinas/isolamento & purificação , Sericinas/farmacologia , Alicerces Teciduais/química
6.
Trends Food Sci Technol ; 116: 415-433, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34345117

RESUMO

BACKGROUND: Korean traditional food (KTF), originated from ancestral agriculture and the nomadic traditions of the Korean peninsula and southern Manchuria, is based on healthy food that balances disease prevention and treatment. Fermented foods that include grains, herbs, fruits, and mushrooms are also an important practice in KTF, providing high levels of Lactobacilli, which confer relevant health benefits, including antiviral properties. Some of these probiotics may also protect against the Influenza virus through the modulation of innate immunity. SCOPE AND APPROACH: The emerging of the COVID-19 pandemic, in addition to other diseases of viral origin, and the problems associated with other respiratory disorders, highlight how essential is a healthy eating pattern to strengthen our immune system.Key Findings and Conclusions: The present review covers the information available on edible plants, herbs, mushrooms, and preparations used in KTF to outline their multiple medicinal effects (e.g., antidiabetic, chemopreventive, antioxidative, anti-inflammatory, antibacterial), emphasizing their role and effects on the immune system with an emphasis on modulating properties of the gut microbiota that further support strong respiratory immunity. Potential functional foods commonly used in Korean cuisine such as Kimchi (a mixture of fermented vegetables), Meju, Doenjang, Jeotgal, and Mekgeolli and fermented sauces, among others, are highlighted for their great potential to improve gut-lung immunity. The traditional Korean diet and dietary mechanisms that may target viruses ACE-2 receptors or affect any step of a virus infection pathway that can determine a patient's prognosis are also highlighted. The regular oral intake of bioactive ingredients used in Korean foods can offer protection for some viral diseases, through protective and immunomodulatory effects, as evidenced in pre-clinical and clinical studies.

7.
Phytother Res ; 35(3): 1248-1283, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33025610

RESUMO

Cactus species are plants that grow in the arid and semiarid regions of the world. They have long fascinated the attention of the scientific community due to their unusual biology. Cactus species are used for a variety of purposes, such as food, fodder, ornamental, and as medicinal plants. In the last regard, they have been used in traditional medicine for eras by the ancient people to cure several diseases. Recent scientific investigations suggest that cactus materials may be used as a source of naturally-occurring products, such as mucilage, fiber, pigments, and antioxidants. For this reason, numerous species under this family are becoming endangered and extinct. This review provides an overview of the habitat, classification, phytochemistry, chemical constituents, extraction and isolation of bioactive compounds, nutritional and pharmacological potential with pre-clinical and clinical studies of different Cactus species. Furthermore, conservation strategies for the ornamental and endangered species have also been discussed.


Assuntos
Cactaceae/química , Compostos Fitoquímicos/uso terapêutico , Fitoterapia/métodos , Extratos Vegetais/química , Plantas Medicinais/efeitos dos fármacos , Animais , Humanos , Compostos Fitoquímicos/farmacologia
8.
Phytother Res ; 35(1): 95-121, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32789910

RESUMO

Origanum species are mostly distributed around the Mediterranean, Euro-Siberian, and Iran-Siberian regions. Since time immemorial, the genus has popularly been used in Southern Europe, as well as on the American continent as a spice now known all over the world under the name "oregano" or "pizza-spice." Origanum plants are also employed to prepare bitter tinctures, wines, vermouths, beer, and kvass. The major components of Origanum essential oil are various terpenes, phenols, phenolic acids, and flavonoids with predominant occurrence of carvacrol and thymol (with reasonable amounts of p-cymen and -terpinene) or of terpinene-4-ol, linalool, and sabinene hydrate. Many species of Origanum genus are used to treat kidney, digestive, nervous, and respiratory disorders, spasms, sore throat, diabetes, lean menstruation, hypertension, cold, insomnia, toothache, headache, epilepsy, urinary tract infections, etc. Origanum essential oil showed potent bioactivities owing to its major constituents' carvacrol, thymol, and monoterpenes. Several preclinical studies evidenced its pharmacological potential as antiproliferative or anticancer, antidiabetic, antihyperlipidemic, anti-obesity, renoprotective, antiinflammatory, vasoprotective, cardioprotective, antinociceptive, insecticidal, and hepatoprotective properties. Its nanotechnological applications as a promising pharmaceutical in order to enhance the solubility, physicochemical stability, and the accumulation rate of its essential oils have been investigated. However, Origanum has been reported causing angioedema, perioral dermatitis, allergic reaction, inhibition of platelet aggregation, hypoglycemia, and abortion. Conclusive evidences are still required for its clinical applications against human medical conditions. Toxicity analyses and risk assessment will aid to its safe and efficacious application. In addition, elaborate structure-activity studies are needed to explore the potential use of Origanum-derived phytochemicals as promising drug candidates.


Assuntos
Óleos Voláteis/química , Origanum/química , Compostos Fitoquímicos/química , Humanos
9.
Phytother Res ; 35(5): 2487-2499, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33587320

RESUMO

The development and spread of resistance to antimicrobial drugs is hampering the management of microbial infectious and wound healing processes. Curcumin is the most active and effective constituent of Curcuma longa L., also known as turmeric, and has a very long and strong history of medicinal value for human health and skincare. Curcumin has been proposed as strong antimicrobial potentialities and many attempts have been made to determine its ability to conjointly control bacterial growth and promote wound healing. However, low aqueous solubility, poor tissue absorption and short plasma half-life due its rapid metabolism needs to be solved for made curcumin formulations as suitable treatment for wound healing. New curcumin nanoformulations have been designed to solve the low bioavailability problem of curcumin. Thus, in the present review, the therapeutic applications of curcumin nanoformulations for antimicrobial and wound healing purposes is described.

10.
Pharmacol Res ; 151: 104584, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31809853

RESUMO

Polyphenols are one of most important phytochemicals distributing in herb plants, vegetables and fruits, which known as important anticancer agents. Given the high incidence and mortality of skin cancer, this study aimed to uncover the chemopreventive effects of polyphenols against skin cancer metastasis. Electronic databases including Scopus, PubMed, and Cochrane library were used to compile the literature from 2000 to August 2019. Only in vivo mechanistic studies with English full-texts were chosen for this review. Polyphenols were included in this study if they were administered in purified form; while total extract and fractions were excluded. Among the 8254 primarily selected papers, only a final number of 34 studies were included. The chemopreventive effects of polyphenols as anthocyanins, ellagitanins, EGCG, oleuropeindihydroxy phenyl, punicalagin, quercetin, resveratrol and theaflavin, were mainly examined in treatment of melanoma as the highly metastatic form of this cutaneous cancer. Those properties are mediated by modulation of angiogenesis, apoptosis, inflammation, metastasis, proliferation, pathways such as EGFR/MAPK, mTOR/PI3K/Akt, JAK/STAT, FAK/RTK2, PGE-2/VEGF, PGE-1/ERK/HIIF-1α, and modulation of related signals including NF-κB, P21WAF/CIP1, Bim, Bax, Bcl2, Bclx, Bim, Puma, Noxa, ILs and MMPs. Chemopreventive effects of polyphenols are mediated by several signaling pathways against skin carcinogenesis and metastasis, implying the importance of polyphenols to open up new horizons in development of anti-skin cancer therapeutic strategies.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Polifenóis/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Anticarcinógenos/farmacologia , Anticarcinógenos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Polifenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
11.
Curr Microbiol ; 77(4): 645-656, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31069462

RESUMO

Marine actinomycetes are prolific sources of marine drug discovery system contributing for several bioactive compounds of biomedical prominence. Metagenomics, a culture-independent technique through its sequence- and function-based screening has led to the discovery and synthesis of numerous biologically significant compounds like polyketide synthase, Non-ribosomal peptide synthetase, antibiotics, and biocatalyst. While metagenomics offers different advantages over conventional sequencing techniques, they also have certain limitations including bias classification, non-availability of quality DNA samples, heterologous expression, and host selection. The assimilation of advanced amplification and screening methods such as φ29 DNA polymerase, Next-Generation Sequencing, Cosmids, and recent bioinformatics tools like automated genome mining, anti-SMASH have shown promising results to overcome these constrains. Consequently, functional genomics and bioinformatics along with synthetic biology will be crucial for the success of the metagenomic approach and indeed for exploring new possibilities among the microbial consortia for the future drug discovery process.


Assuntos
Actinobacteria/química , Actinobacteria/genética , Organismos Aquáticos/genética , Descoberta de Drogas , Metagenômica , Organismos Aquáticos/química , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Policetídeo Sintases
12.
Mar Drugs ; 18(9)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961827

RESUMO

Cancer is at present one of the utmost deadly diseases worldwide. Past efforts in cancer research have focused on natural medicinal products. Over the past decades, a great deal of initiatives was invested towards isolating and identifying new marine metabolites via pharmaceutical companies, and research institutions in general. Secondary marine metabolites are looked at as a favorable source of potentially new pharmaceutically active compounds, having a vast structural diversity and diverse biological activities; therefore, this is an astonishing source of potentially new anticancer therapy. This review contains an extensive critical discussion on the potential of marine microbial compounds and marine microalgae metabolites as anticancer drugs, highlighting their chemical structure and exploring the underlying mechanisms of action. Current limitation, challenges, and future research pathways were also presented.


Assuntos
Antineoplásicos/isolamento & purificação , Cianobactérias/metabolismo , Microalgas/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Neoplasias/tratamento farmacológico , Metabolismo Secundário
13.
Phytother Res ; 34(6): 1248-1267, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31997473

RESUMO

Medicinal herbs are one of the imperative sources of drugs all over the world. Star anise (Illicium verum), an evergreen, medium-sized tree with star-shaped fruit, is an important herb with wide distribution throughout southwestern parts of the Asian continent. Besides its use as spice in culinary, star anise is one of the vital ingredients of the Chinese medicinal herbs and is widely known for its antiviral effects. It is also the source of the precursor molecule, shikimic acid, which is used in the manufacture of oseltamivir (Tamiflu®), an antiviral medication for influenza A and influenza B. Besides, several other molecules with numerous biological benefits including the antiviral effects have been reported from the same plant. Except the antiviral potential, star anise possesses a number of other potentials such as antioxidant, antimicrobial, antifungal, anthelmintic, insecticidal, secretolytic, antinociceptive, anti-inflammatory, gastroprotective, sedative properties, expectorant and spasmolytic, and estrogenic effects. This review aimed to integrate the information on the customary attributes of the plant star anise with a specific prominence on its antiviral properties and the phytochemical constituents along with its clinical aptness.


Assuntos
Antivirais/uso terapêutico , Frutas/química , Illicium/química
14.
Phytother Res ; 34(2): 315-328, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31713286

RESUMO

Convolvulus genus is a representative of the family of Convolvulaceae. Convolvulus plants are broadly distributed all over the world and has been used for many centuries as herbal medicine. Convolvulus genus contains various phytochemicals such as flavonoids, alkaloids, carbohydrates, phenolic compounds, mucilage, unsaturated sterols or terpenes, resin, tannins, lactones, and proteins. This review highlights the phytochemical composition, antimicrobial and antioxidant activities, application as food preservative, traditional medicine use, anticancer activities, and clinical effectiveness in human of Convolvulus plants. All the parts of Convolvulus plants possess therapeutic benefits; preliminary pharmacological data validated their use in traditional medicine. However, further preclinical and clinical experiments are warranted before any application in human health.


Assuntos
Convolvulus/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Animais , Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Convolvulus/classificação , Conservantes de Alimentos , Humanos , Medicina Tradicional , Fitoterapia , Plantas Medicinais/classificação
15.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597283

RESUMO

A balanced metabolic profile is essential for normal human physiological activities. Disproportions in nutrition give rise to imbalances in metabolism that are associated with aberrant immune function and an elevated risk for inflammatory-associated disorders. Inflammation is a complex process, and numerous mediators affect inflammation-mediated disorders. The available clinical modalities do not effectively address the underlying diseases but rather relieve the symptoms. Therefore, novel targeted agents have the potential to normalize the metabolic system and, thus, provide meaningful therapy to the underlying disorder. In this connection, polyphenols, the well-known and extensively studied phytochemical moieties, were evaluated for their effective role in the restoration of metabolism via various mechanistic signaling pathways. The various flavonoids that we observed in this comprehensive review interfere with the metabolic events that induce inflammation. The mechanisms via which the polyphenols, in particular flavonoids, act provide a promising treatment option for inflammatory disorders. However, detailed clinical studies of such molecules are required to decide their clinical fate.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Inflamação/metabolismo , Doenças Metabólicas/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Biomarcadores , Ensaios Clínicos como Assunto , Suscetibilidade a Doenças , Avaliação Pré-Clínica de Medicamentos , Flavonoides/química , Flavonoides/uso terapêutico , Humanos , Inflamação/complicações , Inflamação/diagnóstico , Mediadores da Inflamação/metabolismo , Doenças Metabólicas/diagnóstico , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
16.
J Nanobiotechnology ; 16(1): 71, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231877

RESUMO

Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the treatment of various diseases. The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included information regarding the trends and perspectives in nanomedicine area.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanoestruturas/química , Animais , Produtos Biológicos/administração & dosagem , Descoberta de Drogas/métodos , Humanos , Nanotecnologia/métodos , Preparações Farmacêuticas/administração & dosagem
17.
J Food Sci Technol ; 55(10): 3991-4000, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30228397

RESUMO

Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are organic, carcinogenic and mutagenic compounds that originate from the reaction of PAHs with NOx and OH radicals. In this study, an analytical method was developed, for the determination of seven nitro-PAHs and the method was applied to quantify the nitro-PAHs, in coffee model systems, prepared with coffee beans produced from three distinct locations and under various roasting conditions. Also, experiments were performed to study the effect of adding various amino acids on the formation of nitro-PAHs. The free radicals produced, were quantified by electron spin resonance (ESR), to assess their correlation with the formed nitro-PAHs. After extraction and cleanup, the nitro-PAHs in coffee were analyzed by gas chromatography/mass selective detection. In all heated coffee model systems, the addition of the amino acids, significantly increased the nitro-PAHs compared to the control. The ESR results were consistent with previous outcomes on the formation of nitro-PAHs.

18.
Foodborne Pathog Dis ; 14(5): 260-268, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28418717

RESUMO

The fern plant Dryopteris uniformis has traditionally been used in herbal medicine and possesses many biological activities. This study was conducted to explore the endophytic bacterial diversity associated with D. uniformis and evaluate their antibacterial potential against foodborne pathogenic bacteria (FPB). Among 51 isolated endophytic bacteria (EB), 26 EB were selected based on their morphological characteristics and identified by 16S rRNA gene analysis. The distribution of EB was diverse in the leaf and the stem/root tissues. When the EB were screened for antibacterial activity against five FPB, Listeria monocytogenes, Salmonella Typhimurium, Bacillus cereus, Staphylococcus aureus, and Escherichia coli O157:H7, four EB Bacillus sp. cryopeg, Paenibacillus sp. rif200865, Staphylococcus warneri, and Bacillus psychrodurans had a broad spectrum of antibacterial activity (9.58 ± 0.66 to 21.47 ± 0.27 mm inhibition zone). The butanol solvent extract of B. sp. cryopeg and P. sp. rif200865 displayed effective antibacterial activity against the five FPB, which was evident from the scanning electron microscopy with irregular or burst cell morphology in the EB-treated bacteria compared to smooth and regular cells in case of the control bacteria. The minimum inhibitory concentration and minimum bactericidal concentration values ranged between 250-500 µg/mL and 500-100 µg/mL, respectively. The above outcomes signify the huge prospective of the selected EB in the food industry. Overall, the above results suggested that D. uniformis contains several culturable EB that possess effective antibacterial compounds, and that EB can be utilized as a source of natural antibacterial agents for their practical application in food industry to control the spread of FPB as a natural antibacterial agent.


Assuntos
Antibiose , Dryopteris/microbiologia , Endófitos/isolamento & purificação , Bacillus/isolamento & purificação , Bacillus cereus , Escherichia coli O157 , Contaminação de Alimentos , Microbiologia de Alimentos , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Paenibacillus/isolamento & purificação , RNA Ribossômico 16S/isolamento & purificação , Salmonella typhimurium , Staphylococcus/isolamento & purificação
19.
Foodborne Pathog Dis ; 14(1): 50-58, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27754712

RESUMO

Endophytic bacteria (EB) are a rich source of secondary metabolites with medicinal importance. In this study, EB were isolated from the bottle brush herb Equisetum arvense and identified based on 16S rRNA sequencing. Evaluation of its antibacterial potential was conducted using two common foodborne pathogenic bacteria, Staphylococcus aureus ATCC 12600 and Escherichia coli O157:H7 ATCC 43890. Out of 103 identified EB, three species, Streptomyces albolongus, Dermacoccus sp., and Mycobacterium sp., showed significant antibacterial activity against S. aureus with inhibition zones of 45.34 ± 0.15, 43.28 ± 0.19, and 22.98 ± 0.18 mm, respectively, whereas only two species, Streptomyces griseoaurantiacus (EAL196) and Paenibacillus sp. (EAS116), showed moderate antibacterial activity against E. coli O157:H7 with inhibition zones of 9.41 ± 0.29 and 10.44 ± 0.31 mm, respectively. Furthermore, ethyl acetate extract of S. albolongus, Mycobacterium sp., and Dermacoccus sp. showed antibacterial activity against S. aureus, with inhibition zones of 23.43 ± 0.21, 21.18 ± 0.22, and 19.72 ± 0.10 mm, respectively. The methanol extract of Dermacoccus sp. and Paenibacillus sp. showed antibacterial activity against S. aureus and E. coli O157:H7, with inhibition zones of 11.30 ± 0.17 and 10.01 ± 0.21 mm, respectively. Scanning electron microscopy indicated swollen and lysed cell membranes of pathogens treated with ethyl acetate extract. A possible reason might be, likely due to EB metabolites penetrating the bacterial cell membranes and affecting various metabolic functions resulting in lysis. To the best of our knowledge, this is the first study to report that EB from E. arvense can be used as a source of natural antibacterial compounds against foodborne pathogenic bacteria.


Assuntos
Antibiose , Equisetum/microbiologia , Mycobacterium/fisiologia , Paenibacillus/fisiologia , Streptomyces/fisiologia , Contagem de Colônia Microbiana , Escherichia coli O157/crescimento & desenvolvimento , Microbiologia de Alimentos , Testes de Sensibilidade Microbiana , RNA Ribossômico 16S/isolamento & purificação , Staphylococcus aureus/crescimento & desenvolvimento
20.
Foodborne Pathog Dis ; 13(1): 13-20, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26651059

RESUMO

Many issues have been found to be related to food preservation and food contamination caused by various pathogenic bacteria in recent years. Many antibacterial agents act efficiently against Gram-positive foodborne bacteria; however, they are less effective against Gram-negative foodborne bacteria. In the present study, an attempt has been made to evaluate the antibacterial activity of pyrolysis oil manufactured from Pinus densiflora (PLO) against two Gram-negative foodborne pathogenic bacteria, Salmonella Typhimurium and Escherichia coli O157:H7. PLO possessed potent antibacterial activity against both foodborne pathogenic bacteria, as indicated by inhibition zones of 10.33-12.33 mm and minimum inhibitory concentration and minimum bactericidal concentration values of 250-500 µg/mL and 500-1000 µg/mL, respectively. PLO at the minimum inhibitory concentration exhibited an inhibitory effect on the viability of the bacterial pathogens with leakage of 260 nm absorbing materials, an increase in the relative electrical conductivity, and loss of salt tolerance capacity. PLO exhibited promising antibacterial activity against both of the Gram-negative foodborne pathogenic bacteria and thus it can be utilized in the food sector and pharmaceutical industries for the development of antibiotics and preservatives.


Assuntos
Antibacterianos/farmacologia , Escherichia coli O157/efeitos dos fármacos , Doenças Transmitidas por Alimentos/prevenção & controle , Pinus/química , Óleos de Plantas/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Contagem de Colônia Microbiana , Contaminação de Alimentos , Microbiologia de Alimentos , Conservação de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Óleos de Plantas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA