Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(16): e2205786120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37058487

RESUMO

Stroke-induced cerebral microvascular dysfunction contributes to aggravation of neuronal injury and compromises the efficacy of current reperfusion therapies. Understanding the molecular alterations in cerebral microvessels in stroke will provide original opportunities for scientific investigation of novel therapeutic strategies. Toward this goal, using a recently optimized method which minimizes cell activation and preserves endothelial cell interactions and RNA integrity, we conducted a genome-wide transcriptomic analysis of cerebral microvessels in a mouse model of stroke and compared these transcriptomic alterations with the ones observed in human, nonfatal, brain stroke lesions. Results from these unbiased comparative analyses have revealed the common alterations in mouse stroke microvessels and human stroke lesions and identified shared molecular features associated with vascular disease (e.g., Serpine1/Plasminogen Activator Inhibitor-1, Hemoxygenase-1), endothelial activation (e.g., Angiopoietin-2), and alterations in sphingolipid metabolism and signaling (e.g., Sphigosine-1-Phosphate Receptor 2). Sphingolipid profiling of mouse cerebral microvessels validated the transcript data and revealed the enrichment of sphingomyelin and sphingoid species in the cerebral microvasculature compared to brain and the stroke-induced increase in ceramide species. In summary, our study has identified novel molecular alterations in several microvessel-enriched, translationally relevant, and druggable targets, which are potent modulators of endothelial function. Our comparative analyses have revealed the presence of molecular features associated with cerebral microvascular dysfunction in human chronic stroke lesions. The results shared here provide a detailed resource for therapeutic discovery of candidates for neurovascular protection in stroke and potentially, other pathologies exhibiting cerebral microvascular dysfunction.


Assuntos
Acidente Vascular Cerebral , Camundongos , Humanos , Animais , Acidente Vascular Cerebral/metabolismo , Encéfalo/metabolismo , Endotélio/metabolismo , Microvasos/patologia , Esfingolipídeos/metabolismo , Barreira Hematoencefálica/metabolismo
2.
Microbiol Immunol ; 68(5): 165-178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38444370

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is an ongoing global public health crisis. The causative agent, the SARS-CoV-2 virus, enters host cells via molecular interactions between the viral spike protein and the host cell ACE2 surface protein. The SARS-CoV-2 spike protein is extensively decorated with up to 66 N-linked glycans. Glycosylation of viral proteins is known to function in immune evasion strategies but may also function in the molecular events of viral entry into host cells. Here, we show that N-glycosylation at Asn331 and Asn343 of SARS-CoV-2 spike protein is required for it to bind to ACE2 and for the entry of pseudovirus harboring the SARS-CoV-2 spike protein into cells. Interestingly, high-content glycan binding screening data have shown that N-glycosylation of Asn331 and Asn343 of the RBD is important for binding to the specific glycan molecule G4GN (Galß-1,4 GlcNAc), which is critical for spike-RBD-ACE2 binding. Furthermore, IL-6 was identified through antibody array analysis of conditioned media of the corresponding pseudovirus assay. Mutation of N-glycosylation of Asn331 and Asn343 sites of the spike receptor-binding domain (RBD) significantly reduced the transcriptional upregulation of pro-inflammatory signaling molecule IL-6. In addition, IL-6 levels correlated with spike protein levels in COVID-19 patients' serum. These findings establish the importance of RBD glycosylation in SARS-CoV-2 pathogenesis, which can be exploited for the development of novel therapeutics for COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Interleucina-6 , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Humanos , Glicosilação , Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Interleucina-6/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Células HEK293 , Asparagina/metabolismo , Polissacarídeos/metabolismo
3.
J Nanobiotechnology ; 20(1): 393, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045375

RESUMO

High-quality point-of-care is critical for timely decision of disease diagnosis and healthcare management. In this regard, biosensors have revolutionized the field of rapid testing and screening, however, are confounded by several technical challenges including material cost, half-life, stability, site-specific targeting, analytes specificity, and detection sensitivity that affect the overall diagnostic potential and therapeutic profile. Despite their advances in point-of-care testing, very few classical biosensors have proven effective and commercially viable in situations of healthcare emergency including the recent COVID-19 pandemic. To overcome these challenges functionalized magnetic nanoparticles (MNPs) have emerged as key players in advancing the biomedical and healthcare sector with promising applications during the ongoing healthcare crises. This critical review focus on understanding recent developments in theranostic applications of functionalized magnetic nanoparticles (MNPs). Given the profound global economic and health burden, we discuss the therapeutic impact of functionalized MNPs in acute and chronic diseases like small RNA therapeutics, vascular diseases, neurological disorders, and cancer, as well as for COVID-19 testing. Lastly, we culminate with a futuristic perspective on the scope of this field and provide an insight into the emerging opportunities whose impact is anticipated to disrupt the healthcare industry.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Nanopartículas de Magnetita , Nanopartículas , COVID-19/diagnóstico , Teste para COVID-19 , Doença Crônica , Humanos , Nanopartículas de Magnetita/uso terapêutico , Nanomedicina , Pandemias
4.
J Biol Chem ; 295(15): 5081-5094, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32152226

RESUMO

Cleavage and polyadenylation specificity factor 6 (CPSF6) is a cellular protein involved in mRNA processing. Emerging evidence suggests that CPSF6 also plays key roles in HIV-1 infection, specifically during nuclear import and integration targeting. However, the cellular and molecular mechanisms that regulate CPSF6 expression are largely unknown. In this study, we report a post-transcriptional mechanism that regulates CPSF6 via the cellular microRNA miR-125b. An in silico analysis revealed that the 3'UTR of CPSF6 contains a miR-125b-binding site that is conserved across several mammalian species. Because miRNAs repress protein expression, we tested the effects of miR-125b expression on CPSF6 levels in miR-125b knockdown and over-expression experiments, revealing that miR-125b and CPSF6 levels are inversely correlated. To determine whether miR-125b post-transcriptionally regulates CPSF6, we introduced the 3'UTR of CPSF6 mRNA into a luciferase reporter and found that miR-125b negatively regulates CPSF6 3'UTR-driven luciferase activity. Accordingly, mutations in the miR-125b seed sequence abrogated the regulatory effect of the miRNA on the CPSF6 3'UTR. Finally, pulldown experiments demonstrated that miR-125b physically interacts with CPSF6 3'UTR. Interestingly, HIV-1 infection down-regulated miR-125b expression concurrent with up-regulation of CPSF6. Notably, miR-125b down-regulation in infected cells was not due to reduced pri-miRNA or pre-miRNA levels. However, miR-125b down-regulation depended on HIV-1 reverse transcription but not viral DNA integration. These findings establish a post-transcriptional mechanism that controls CPSF6 expression and highlight a novel function of miR-125b during HIV-host interaction.


Assuntos
Regiões 3' não Traduzidas/genética , Capsídeo/metabolismo , Infecções por HIV/virologia , HIV-1/fisiologia , MicroRNAs/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Sítios de Ligação , Infecções por HIV/genética , Infecções por HIV/metabolismo , Humanos , MicroRNAs/metabolismo , Mutação , Integração Viral , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/genética
5.
Amino Acids ; 53(12): 1903-1915, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34417893

RESUMO

Cocaine is a commonly abused drug worldwide. Acute as well as repeated exposure to cocaine activates persistent cellular and molecular changes in the brain reward regions. The effects of cocaine are predominantly mediated via alterations in neuronal gene expression by chromatin remodeling. Poly(ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation of chromatin has been reported as an important regulator of cocaine-mediated gene expression. PARP-1 dependent ADP-ribosylation is an energy-dependent process. In this study, we investigated the cellular energy response to cocaine-induced upregulation of PARP-1 expression. Exposure of differentiated SH-SY5Y cells to varying concentrations of cocaine resulted in the induction of PARP-1 dependent PARylation of p53 tumor suppressor. Further analysis revealed that PARylation of p53 by cocaine treatment resulted in nuclear accumulation of p53. However, induction and nuclear accumulation of p53 did not correlate with neuronal apoptosis/cell death upon cocaine exposure. Interestingly, cocaine-induced p53 PARylation resulted in the induction of proline oxidase (POX)-a p53 responsive gene involved in cellular metabolism. Given that cocaine-induced p53 PARylation is an energy-dependent process, we observed that cocaine-induced PARP-1/p53/POX axes alters cellular energy metabolism. Accordingly, using pharmacological and genetic studies of PARP-1, p53, and POX, we demonstrated the contribution of POX in maintaining cellular energy during neuronal function. Collectively, these studies highlight activation of a novel metabolic pathway in response to cocaine treatment.


Assuntos
Trifosfato de Adenosina/metabolismo , Cocaína/efeitos adversos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Prolina/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo
6.
J Biol Chem ; 290(42): 25439-51, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26330555

RESUMO

Proline oxidase (POX) catalytically converts proline to pyrroline-5-carboxylate. This catabolic conversion generates reactive oxygen species (ROS) that triggers cellular signaling cascades including autophagy and apoptosis. This study for the first time demonstrates a role of POX in HIV-1 envelope glycoprotein (gp120)-induced neuronal autophagy. HIV-1 gp120 is a neurotoxic factor and is involved in HIV-1-associated neurological disorders. However, the mechanism of gp120-mediated neurotoxicity remains unclear. Using SH-SY5Y neuroblastoma cells as a model, this study demonstrates that gp120 treatment induced POX expression and catalytic activity. Concurrently, gp120 also increased intracellular ROS levels. However, increased ROS had a minimal effect on neuronal apoptosis. Further investigation indicated that the immediate cellular response to increased ROS paralleled with induction of autophagy markers, beclin-1 and LC3-II. These data lead to the hypothesis that neuronal autophagy is activated as a cellular protective response to the toxic effects of gp120. A direct and functional role of POX in gp120-mediated neuronal autophagy was examined by inhibition and overexpression studies. Inhibition of POX activity by a competitive inhibitor "dehydroproline" decreased ROS levels concomitant with reduced neuronal autophagy. Conversely, overexpression of POX in neuronal cells increased ROS levels and activated ROS-dependent autophagy. Mechanistic studies suggest that gp120 induces POX by targeting p53. Luciferase reporter assays confirm that p53 drives POX transcription. Furthermore, data demonstrate that gp120 induces p53 via binding to the CXCR4 co-receptor. Collectively, these results demonstrate a novel role of POX as a stress response metabolic regulator in HIV-1 gp120-associated neuronal autophagy.


Assuntos
Autofagia/fisiologia , Proteína gp120 do Envelope de HIV/fisiologia , Neurônios/fisiologia , Prolina Oxidase/metabolismo , Linhagem Celular Tumoral , HIV-1 , Humanos , Mitocôndrias/enzimologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
7.
eNeuro ; 11(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39266325

RESUMO

Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in sepsis-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammation. In the acute phase, we identified novel molecular (e.g., upregulation of plasmalemma vesicle-associated protein, PLVAP, a driver of endothelial permeability, and the procoagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small-molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small-molecule BBB permeability, elevated levels of PAI-1, intra-/perivascular fibrin/fibrinogen deposition, and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor, suggesting diffuse axonal injury, synapse degeneration, and impaired neurotrophism. Our study serves as a standardized mouse model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition.


Assuntos
Barreira Hematoencefálica , Disfunção Cognitiva , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microvasos , Sepse , Animais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Microvasos/metabolismo , Microvasos/patologia , Camundongos , Masculino , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Sepse/complicações , Sepse/fisiopatologia , Encéfalo/metabolismo
8.
bioRxiv ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38853992

RESUMO

Systemic inflammation has been implicated in the development and progression of neurodegenerative conditions such as cognitive impairment and dementia. Recent clinical studies indicate an association between sepsis, endothelial dysfunction, and cognitive decline. However, the investigations of the role and therapeutic potential of the cerebral microvasculature in systemic inflammation-induced cognitive dysfunction have been limited by the lack of standardized experimental models for evaluating the alterations in the cerebral microvasculature and cognition induced by the systemic inflammatory response. Herein, we validated a mouse model of endotoxemia that recapitulates key pathophysiology related to sepsis-induced cognitive dysfunction, including the induction of an acute systemic hyperinflammatory response, blood-brain barrier (BBB) leakage, neurovascular inflammation, and memory impairment after recovery from the systemic inflammatory response. In the acute phase, we identified novel molecular (e.g. upregulation of plasmalemma vesicle associated protein, a driver of endothelial permeability, and the pro-coagulant plasminogen activator inhibitor-1, PAI-1) and functional perturbations (i.e., albumin and small molecule BBB leakage) in the cerebral microvasculature along with neuroinflammation. Remarkably, small molecule BBB permeability, elevated levels of PAI-1, intra/perivascular fibrin/fibrinogen deposition and microglial activation persisted 1 month after recovery from sepsis. We also highlight molecular neuronal alterations of potential clinical relevance following systemic inflammation including changes in neurofilament phosphorylation and decreases in postsynaptic density protein 95 and brain-derived neurotrophic factor suggesting diffuse axonal injury, synapse degeneration and impaired neurotrophism. Our study serves as a standardized model to support future mechanistic studies of sepsis-associated cognitive dysfunction and to identify novel endothelial therapeutic targets for this devastating condition. SIGNIFICANCE: The limited knowledge of how systemic inflammation contributes to cognitive decline is a major obstacle to the development of novel therapies for dementia and other neurodegenerative diseases. Clinical evidence supports a role for the cerebral microvasculature in sepsis-induced neurocognitive dysfunction, but the investigation of the underlying mechanisms has been limited by the lack of standardized experimental models. Herein, we optimized a mouse model that recapitulates important pathophysiological aspects of systemic inflammation-induced cognitive decline and identified key alterations in the cerebral microvasculature associated with cognitive dysfunction. Our study provides a reliable experimental model for mechanistic studies and therapeutic discovery of the impact of systemic inflammation on cerebral microvascular function and the development and progression of cognitive impairment.

9.
BMC Microbiol ; 13: 236, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24148706

RESUMO

BACKGROUND: Development of Salmonella enterica serovar Typhimurium (S. Typhimurium) live attenuated vaccine carrier strain to prevent enteric infections has been a subject of intensive study. Several mutants of S. Typhimurium have been proposed as an effective live attenuated vaccine strain. Unfortunately, many such mutant strains failed to successfully complete the clinical trials as they were suboptimal in delivering effective safety and immunogenicity. However, it remained unclear, whether the existing live attenuated S. Typhimurium strains can further be attenuated with improved safety and immune efficacy or not. RESULTS: We deleted a specific non-SPI (Salmonella Pathogenicity Island) encoded virulence factor mig-14 (an antimicrobial peptide resistant protein) in ssaV deficient S. Typhimurium strain. The ssaV is an important SPI-II gene involved in Salmonella replication in macrophages and its mutant strain is considered as a potential live attenuated strain. However, fatal systemic infection was previously reported in immunocompromised mice like Nos2-/- and Il-10-/- when infected with ssaV deficient S. Typhimurium. Here we reported that attenuation of S. Typhimurium ssaV mutant in immunocompromised mice can further be improved by introducing additional deletion of gene mig-14. The ssaV, mig-14 double mutant was as efficient as ssaV mutant, with respect to host colonization and eliciting Salmonella-specific mucosal sIgA and serum IgG response in wild-type C57BL/6 mice. Interestingly, this double mutant did not show any systemic infection in immunocompromised mice. CONCLUSIONS: This study suggests that ssaV, mig-14 double mutant strain can be effectively used as a potential vaccine candidate even in immunocompromised mice. Such attenuated vaccine strain could possibly used for expression of heterologous antigens and thus for development of a polyvalent vaccine strain.


Assuntos
Sistemas de Secreção Bacterianos , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/genética , Salmonella typhimurium/imunologia , Animais , Anticorpos Antibacterianos/análise , Anticorpos Antibacterianos/sangue , Modelos Animais de Doenças , Deleção de Genes , Imunidade nas Mucosas , Hospedeiro Imunocomprometido , Imunoglobulina A Secretora/análise , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos C57BL , Vacinas contra Salmonella/administração & dosagem , Vacinas contra Salmonella/efeitos adversos , Vacinas contra Salmonella/genética , Salmonella typhimurium/patogenicidade , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
10.
bioRxiv ; 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36824768

RESUMO

INTRODUCTION: In this study, we explore the role of oxidative stress produced by NOX2-containing NADPH oxidase as a molecular mechanism causing capillary stalling and cerebral blood flow deficits in the APP/PS1 mouse model of AD. METHODS: We inhibited NOX2 in APP/PS1 mice by administering a 10 mg/kg dose of the peptide inhibitor gp91-ds-tat i.p., for two weeks. We used in vivo two-photon imaging to measure capillary stalling, penetrating arteriole flow, and vascular inflammation. We also characterized short-term memory function and gene expression changes in cerebral microvessels. RESULTS: We found that after NOX2 inhibition capillary stalling, as well as parenchymal and vascular inflammation, were significantly reduced. In addition, we found a significant increase in penetrating arteriole flow, followed by an improvement in short-term memory, and downregulation of inflammatory gene expression pathways. DISCUSSION: Oxidative stress is a major mechanism leading to microvascular dysfunction in AD, and represents an important therapeutic target.

11.
Front Genet ; 13: 875894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422844

RESUMO

Phospholipid scramblases (PLSCRs) that catalyze rapid mixing of plasma membrane lipids result in surface exposure of phosphatidyl serine (PS), a lipid normally residing to the inner plasma membrane leaflet. PS exposure provides a chemotactic eat-me signal for phagocytes resulting in non-inflammatory clearance of apoptotic cells by efferocytosis. However, metastatic tumor cells escape efferocytosis through alteration of tumor microenvironment and apoptotic signaling. Tumor cells exhibit altered membrane features, high constitutive PS exposure, low drug permeability and increased multidrug resistance through clonal evolution. PLSCRs are transcriptionally up-regulated in tumor cells leading to plasma membrane remodeling and aberrant PS exposure on cell surface. In addition, PLSCRs interact with multiple cellular components to modulate cancer progression and survival. While PLSCRs and PS exposed on tumor cells are novel drug targets, many exogenous molecules that catalyze lipid scrambling on tumor plasma membrane are potent anticancer therapeutic molecules. In this review, we provide a comprehensive analysis of scramblase mediated signaling events, membrane alteration specific to tumor development and possible therapeutic implications of scramblases and PS exposure.

12.
Membranes (Basel) ; 12(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36295673

RESUMO

Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.

13.
Noncoding RNA ; 7(4)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34698261

RESUMO

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 (2019-nCoV) has devastated global healthcare and economies. Despite the stabilization of infectivity rates in some developed nations, several countries are still under the grip of the pathogenic viral mutants that are causing a significant increase in infections and hospitalization. Given this urgency, targeting of key host factors regulating SARS-CoV-2 life cycle is postulated as a novel strategy to counter the virus and its associated pathological outcomes. In this regard, Poly (ADP)-ribose polymerase-1 (PARP-1) is being increasingly recognized as a possible target. PARP-1 is well studied in human diseases such as cancer, central nervous system (CNS) disorders and pathology of RNA viruses. Emerging evidence indicates that regulation of PARP-1 by non-coding RNAs such as microRNAs is integral to cell survival, redox balance, DNA damage response, energy homeostasis, and several other cellular processes. In this short perspective, we summarize the recent findings on the microRNA/PARP-1 axis and its therapeutic potential for COVID-19 pathologies.

14.
Bioengineered ; 12(2): 11675-11698, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756133

RESUMO

Engineering of cellular biomolecules is an emerging landscape presenting creative therapeutic opportunities. Recently, several strategies such as biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems have been developed to improve specific biological functions, however, have been confounded with fundamental and technical roadblocks. Rapidly emerging investigations on the bioengineering prospects of mammalian ribonucleic acid (RNA) is expected to result in significant biomedical advances. More specifically, the current trend focuses on devising non-coding (nc) RNAs as therapeutic candidates for complex neurological diseases. Given the pleiotropic and regulatory role, ncRNAs such as microRNAs and long non-coding RNAs are deemed as attractive therapeutic candidates. Currently, the list of non-coding RNAs in mammals is evolving, which presents the plethora of hidden possibilities including their scope in biomedicine. Herein, we critically review on the emerging repertoire of ncRNAs in neurological diseases such as Alzheimer's disease, Parkinson's disease, neuroinflammation and drug abuse disorders. Importantly, we present the advances in engineering of ncRNAs to improve their biocompatibility and therapeutic feasibility as well as provide key insights into the applications of bioengineered non-coding RNAs that are investigated for neurological diseases.


Assuntos
Bioengenharia , Doenças do Sistema Nervoso/genética , RNA não Traduzido/metabolismo , Animais , Tecnologia Biomédica , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , MicroRNAs/genética , RNA não Traduzido/genética , RNA não Traduzido/uso terapêutico
15.
Sci Rep ; 10(1): 11197, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641757

RESUMO

MiR-124 is a highly expressed miRNA in the brain and regulates genes involved in neuronal function. We report that miR-124 post-transcriptionally regulates PARP-1. We have identified a highly conserved binding site of miR-124 in the 3'-untranslated region (3'UTR) of Parp-1 mRNA. We demonstrate that miR-124 directly binds to the Parp-1 3'UTR and mutations in the seed sequences abrogate binding between the two RNA molecules. Luciferase reporter assay revealed that miR-124 post-transcriptionally regulates Parp-1 3'UTR activity in a dopaminergic neuronal cell model. Interestingly, the binding region of miR-124 in Parp-1 3'UTR overlapped with the target sequence of miR-125b, another post-transcriptional regulator of Parp-1. Our results from titration and pull-down studies revealed that miR-124 binds to Parp-1 3'UTR with greater affinity and confers a dominant post-transcriptional inhibition compared to miR-125b. Interestingly, acute or chronic cocaine exposure downregulated miR-124 levels concomitant with upregulation of PARP-1 protein in dopaminergic-like neuronal cells in culture. Levels of miR-124 were also downregulated upon acute or chronic cocaine exposure in the mouse nucleus accumbens (NAc)-a key reward region of brain. Time-course studies revealed that cocaine treatment persistently downregulated miR-124 in NAc. Consistent with this finding, miR-124 expression was also significantly reduced in the NAc of animals conditioned for cocaine place preference. Collectively, these studies identify Parp-1 as a direct target of miR-124 in neuronal cells, establish miR-124 as a cocaine-regulated miRNA in the mouse NAc, and highlight a novel pathway underlying the molecular effects of cocaine.


Assuntos
Cocaína/farmacologia , MicroRNAs/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/genética , Regiões 3' não Traduzidas/genética , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , MicroRNAs/genética , Modelos Animais , Mutação , Núcleo Accumbens/citologia , Núcleo Accumbens/metabolismo
16.
Clin Cosmet Investig Dermatol ; 12: 519-532, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410045

RESUMO

Skin has the natural ability to heal and replace dead cells regulated by a network of complex immune processes. This ability is conferred by the population of resident immune cells that act in coordination with other players to provide a homeostatic environment under constant challenge. Other than providing structure and integrity, the epidermis and dermis also house distinct immune properties. The dermal part is represented by fibroblasts and endothelial cells followed by an array of immune cells which includes dendritic cells (DCs), macrophages, mast cells, NK-cells, neutrophils, basophils, eosinophils, αß T lymphocytes, B-cells and platelets. On the other hand, the functionally active immune cells in the epidermis comprise keratinocytes, DCs, NKT-cells, γδ T cells and αß T cells (CD4+ and CD8+). Keratinocytes create a unique microenvironment for the cells of the immune system by promoting immune recognition and cellular differentiation. T lymphocytes exhibit tissue-specific tropism toward the epidermis and the lymphatic drainage system important for their function in immune regulation. This diversity in immune regulators makes the skin a unique organ to overcome pathogenic or foreign invasion. In addition, the highly coordinated molecular events make the skin an attractive model to understand and explore its regenerative potential.

17.
J Vis Exp ; (136)2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29985341

RESUMO

MicroRNAs (miRNAs) are a class of small noncoding RNAs that post-transcriptionally regulate cellular gene expression. MiRNAs bind to the 3' untranslated region (UTR) of target mRNA to inhibit protein translation or in some instances cause mRNA degradation. The binding of the miRNA to the 3' UTR of the target mRNA is mediated by a 2-8 nucleotide seed sequence at the 5' end of miRNA. While the role of miRNAs as cellular regulatory molecules is well established, identification of the target mRNAs with functional relevance remains a challenge. Bioinformatic tools have been employed to predict sequences within the 3' UTR of mRNAs as potential targets for miRNA binding. These tools have also been utilized to determine the evolutionary conservation of such sequences among related species in an attempt to predict functional role. However, these computational methods often generate false positive results and are limited to predicting canonical interaction between miRNA and mRNA. Therefore, experimental procedures that measure direct binding of miRNA to its mRNA target are necessary to establish functional interaction. In this report, we describe a sensitive method for validating direct interaction between the cellular miRNA miR-125b and the 3' UTR of PARP-1 mRNA. We elaborate a protocol in which synthetic biotinylated-miRNA mimics were transfected into mammalian cells and the miRNA-mRNA complex in the cellular lysate was pulled down with streptavidin-coated magnetic beads. Finally, the target mRNA in the pulled-down nucleic acid complex was quantified using a qPCR-based strategy.


Assuntos
Biotina/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Humanos , Transfecção
18.
eNeuro ; 4(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828398

RESUMO

Cocaine exposure alters gene expression in the brain via methylation and acetylation of histones along with methylation of DNA. Recently, poly (ADP-ribose) polymerase-1 (PARP-1) catalyzed PARylation has been reported as an important regulator of cocaine-mediated gene expression. In this study, we report that the cellular microRNA "miR-125b" plays a key role for cocaine-induced PARP-1 expression. Acute and chronic cocaine exposure resulted in the downregulation of miR-125b concurrent with upregulation of PARP-1 in dopaminergic neuronal cells and nucleus accumbens (NAc) of mice but not in the medial prefrontal cortex (PFC) or ventral tegmental area (VTA). In silico analysis predicted a binding site of miR-125b in a conserved 3'-untranslated region (3'UTR) of the PARP-1 mRNA. Knockdown and overexpression studies showed that miR-125b levels negatively correlate with PARP-1 protein expression. Luciferase reporter assay using a vector containing the 3'UTR of PARP-1 mRNA confirmed regulation of PARP-1 by miR-125b. Specific nucleotide mutations within the binding site abrogated miR-125b's regulatory effect on PARP-1 3'UTR. Finally, we established that downregulation of miR-125b and concurrent upregulation of PARP-1 is dependent on binding of cocaine to the dopamine transporter (DAT). Collectively, these results identify miR-125b as a post-transcriptional regulator of PARP-1 expression and establish a novel mechanism underlying the molecular effects of cocaine action.


Assuntos
Encéfalo/efeitos dos fármacos , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Animais , Anexina A5/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Encéfalo/metabolismo , Bovinos , Linhagem Celular Tumoral , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma/patologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Front Microbiol ; 6: 1111, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539167

RESUMO

Over 1.2 million people in the United States are infected with the human immunodeficiency virus type 1 (HIV-1). Tremendous progress has been made over the past three decades on many fronts in the prevention and treatment of HIV-1 disease. However, HIV-1 infection is incurable and antiretroviral drugs continue to remain the only effective treatment option for HIV infected patients. Unfortunately, only three out of ten HIV-1 infected individuals in the US have the virus under control. Thus, majority of HIV-1 infected individuals in the US are either unaware of their infection status or not connected/retained to care or are non-adherent to antiretroviral therapy (ART). This national public health crisis, as well as the ongoing global HIV/AIDS pandemic, is further exacerbated by substance abuse, which serves as a powerful cofactor at every stage of HIV/AIDS including transmission, diagnosis, pathogenesis, and treatment. Clinical studies indicate that substance abuse may increase viral load, accelerate disease progression and worsen AIDS-related mortality even among ART-adherent patients. However, confirming a direct causal link between substance abuse and HIV/AIDS in human patients remains a highly challenging endeavor. In this review we will discuss the recent and past developments in clinical and basic science research on the effects of cocaine abuse on HIV-1 pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA