Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
IEEE Trans Pattern Anal Mach Intell ; 45(4): 5087-5098, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35793300

RESUMO

Graph neural networks (GNNs) have recently emerged as a dominant paradigm for machine learning with graphs. Research on GNNs has mainly focused on the family of message passing neural networks (MPNNs). Similar to the Weisfeiler-Leman (WL) test of isomorphism, these models follow an iterative neighborhood aggregation procedure to update vertex representations, and they next compute graph representations by aggregating the representations of the vertices. Although very successful, MPNNs have been studied intensively in the past few years. Thus, there is a need for novel architectures which will allow research in the field to break away from MPNNs. In this paper, we propose a new graph neural network model, so-called π-GNN which learns a "soft" permutation (i. e., doubly stochastic) matrix for each graph, and thus projects all graphs into a common vector space. The learned matrices impose a "soft" ordering on the vertices of the input graphs, and based on this ordering, the adjacency matrices are mapped into vectors. These vectors can be fed into fully-connected or convolutional layers to deal with supervised learning tasks. In case of large graphs, to make the model more efficient in terms of running time and memory, we further relax the doubly stochastic matrices to row stochastic matrices. We empirically evaluate the model on graph classification and graph regression datasets and show that it achieves performance competitive with state-of-the-art models.

2.
Nat Mach Intell ; 5(4): 340-350, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38076673

RESUMO

Artificial intelligence for graphs has achieved remarkable success in modeling complex systems, ranging from dynamic networks in biology to interacting particle systems in physics. However, the increasingly heterogeneous graph datasets call for multimodal methods that can combine different inductive biases-the set of assumptions that algorithms use to make predictions for inputs they have not encountered during training. Learning on multimodal datasets presents fundamental challenges because the inductive biases can vary by data modality and graphs might not be explicitly given in the input. To address these challenges, multimodal graph AI methods combine different modalities while leveraging cross-modal dependencies using graphs. Diverse datasets are combined using graphs and fed into sophisticated multimodal architectures, specified as image-intensive, knowledge-grounded and language-intensive models. Using this categorization, we introduce a blueprint for multimodal graph learning, use it to study existing methods and provide guidelines to design new models.

3.
Neural Netw ; 153: 474-495, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35816860

RESUMO

Graph autoencoders (GAE) and variational graph autoencoders (VGAE) emerged as powerful methods for link prediction. Their performances are less impressive on community detection problems where, according to recent and concurring experimental evaluations, they are often outperformed by simpler alternatives such as the Louvain method. It is currently still unclear to which extent one can improve community detection with GAE and VGAE, especially in the absence of node features. It is moreover uncertain whether one could do so while simultaneously preserving good performances on link prediction. In this paper, we show that jointly addressing these two tasks with high accuracy is possible. For this purpose, we introduce and theoretically study a community-preserving message passing scheme, doping our GAE and VGAE encoders by considering both the initial graph structure and modularity-based prior communities when computing embedding spaces. We also propose novel training and optimization strategies, including the introduction of a modularity-inspired regularizer complementing the existing reconstruction losses for joint link prediction and community detection. We demonstrate the empirical effectiveness of our approach, referred to as Modularity-Aware GAE and VGAE, through in-depth experimental validation on various real-world graphs.


Assuntos
Redes Neurais de Computação
4.
Neural Netw ; 130: 195-205, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32682085

RESUMO

Graph neural networks (GNNs) have emerged recently as a powerful architecture for learning node and graph representations. Standard GNNs have the same expressive power as the Weisfeiler-Lehman test of graph isomorphism in terms of distinguishing non-isomorphic graphs. However, it was recently shown that this test cannot identify fundamental graph properties such as connectivity and triangle freeness. We show that GNNs also suffer from the same limitation. To address this limitation, we propose a more expressive architecture, k-hop GNNs, which updates a node's representation by aggregating information not only from its direct neighbors, but from its k-hop neighborhood. We show that the proposed architecture can identify fundamental graph properties. We evaluate the proposed architecture on standard node classification and graph classification datasets. Our experimental evaluation confirms our theoretical findings since the proposed model achieves performance better or comparable to standard GNNs and to state-of-the-art algorithms.


Assuntos
Redes Neurais de Computação , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA