RESUMO
Immunomodulatory imide drugs form the core of many pharmaceutically relevant structures, but Csp2-Csp2 bond formation via metal-catalyzed cross coupling is difficult due to the sensitivity of the glutarimide ring ubiquitous in these structures. We report that replacement of the traditional alkali base with a fluoride source enhances a previously challenging Suzuki-Miyaura coupling on glutarimide-containing compounds with trifluoroborates. These enabling conditions are reactive enough to generate these derivatives in high yields but mild enough to preserve both the glutarimide and its sensitive stereocenter. Experimental and computational data suggest a mechanistically distinct process of π-coordination of the trifluoroborate enabled by these conditions.
Assuntos
Fluoretos , Paládio , Estrutura Molecular , Catálise , Paládio/químicaRESUMO
BACKGROUND: Suboptimal exposure to antituberculosis (anti-TB) drugs has been associated with unfavourable treatment outcomes. We aimed to investigate estimates and determinants of first-line anti-TB drug pharmacokinetics in children and adolescents at a global level. METHODS: We systematically searched MEDLINE, Embase and Web of Science (1990-2021) for pharmacokinetic studies of first-line anti-TB drugs in children and adolescents. Individual patient data were obtained from authors of eligible studies. Summary estimates of total/extrapolated area under the plasma concentration-time curve from 0 to 24â h post-dose (AUC0-24) and peak plasma concentration (C max) were assessed with random-effects models, normalised with current World Health Organization-recommended paediatric doses. Determinants of AUC0-24 and C max were assessed with linear mixed-effects models. RESULTS: Of 55 eligible studies, individual patient data were available for 39 (71%), including 1628 participants from 12 countries. Geometric means of steady-state AUC0-24 were summarised for isoniazid (18.7 (95% CI 15.5-22.6)â h·mg·L-1), rifampicin (34.4 (95% CI 29.4-40.3)â h·mg·L-1), pyrazinamide (375.0 (95% CI 339.9-413.7)â h·mg·L-1) and ethambutol (8.0 (95% CI 6.4-10.0)â h·mg·L-1). Our multivariate models indicated that younger age (especially <2â years) and HIV-positive status were associated with lower AUC0-24 for all first-line anti-TB drugs, while severe malnutrition was associated with lower AUC0-24 for isoniazid and pyrazinamide. N-acetyltransferase 2 rapid acetylators had lower isoniazid AUC0-24 and slow acetylators had higher isoniazid AUC0-24 than intermediate acetylators. Determinants of C max were generally similar to those for AUC0-24. CONCLUSIONS: This study provides the most comprehensive estimates of plasma exposures to first-line anti-TB drugs in children and adolescents. Key determinants of drug exposures were identified. These may be relevant for population-specific dose adjustment or individualised therapeutic drug monitoring.
Assuntos
Antituberculosos , Isoniazida , Criança , Adolescente , Humanos , Pré-Escolar , Antituberculosos/uso terapêutico , Isoniazida/uso terapêutico , Pirazinamida/uso terapêutico , Etambutol/uso terapêutico , Rifampina/uso terapêuticoRESUMO
PURPOSE OF THE REVIEW: To describe important recent developments in the treatment of multidrug resistant tuberculosis (MDR-TB). RECENT FINDINGS: In the last decade, novel and repurposed antituberculosis drugs have transformed MDR-TB treatment with improved rates of treatment success, better tolerability and safety and reduced duration. As recently as 2016, standard care relied on up to seven drugs for 24âmonths with treatment success no better than 70%. Seven drug shorter so-called "Bangladesh" style regimens subsequently achieved similar or better results at a duration of 9-12âmonths but concerns about first-line resistance additional to rifampicin hampered global uptake. After conditional approval in 2012, the novel agent bedaquiline was demonstrated to improve outcomes and reduce mortality when used in longer and shorter regimens, resulting in the replacement of injectable agents. In the last 2 years, clinical trials of all-oral 6-month three or four drug regimens containing bedaquiline, pretomanid and linezolid have shown superior efficacy against both longer and shorter traditional regimens, resulting in major changes in WHO guidance. SUMMARY: Although some concerns around safety and emergent bedaquiline resistance remain to be fully addressed, 6-month all oral regimens promise to transform the treatment of people with MDR-TB worldwide.
Assuntos
Nitroimidazóis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/uso terapêutico , Quimioterapia Combinada , Resultado do TratamentoRESUMO
Tuberculosis (TB) is one of the biggest killers among infectious diseases worldwide. Together with the identification of drugs that can provide benefits to patients, the challenge in TB is also the optimisation of the duration of these treatments. While conventional duration of treatment in TB is 6 months, there is evidence that shorter durations might be as effective but could be associated with fewer side effects and may be associated with better adherence. Based on a recent proposal of an adaptive order-restricted superiority design that employs the ordering assumptions within various duration of the same drug, we propose a non-inferiority (typically used in TB trials) adaptive design that effectively uses the order assumption. Together with the general construction of the hypothesis testing and expression for type I and type II errors, we focus on how the novel design was proposed for a TB trial concept. We consider a number of practical aspects such as choice of the design parameters, randomisation ratios, and timings of the interim analyses, and how these were discussed with the clinical team.
Assuntos
Duração da Terapia , Tuberculose , Humanos , Projetos de Pesquisa , Tuberculose/tratamento farmacológico , Estudos de Equivalência como AsuntoRESUMO
The site-selective palladium-catalyzed three-component coupling of unactivated alkenyl carbonyl compounds, aryl- or alkenylboronic acids, and N-fluorobenzenesulfonimide is described herein. Tuning of the steric environment on the bidentate directing auxiliary enhances regioselectivity and facilitates challenging C(sp3 )-F reductive elimination from a PdIV intermediate to afford 1,2-carbofluorination products in moderate to good yields.
Assuntos
Alcenos , Paládio , CatáliseRESUMO
BACKGROUND: Intrapulmonary pharmacokinetics may better explain response to tuberculosis (TB) treatment than plasma pharmacokinetics. We explored these relationships by modeling bacillary clearance in sputum in adult patients on first-line treatment in Malawi. METHODS: Bacillary elimination rates (BER) were estimated using linear mixed-effects modelling of serial time-to-positivity in mycobacterial growth indicator tubes for sputum collected during the intensive phase of treatment (weeks 0-8) for microbiologically confirmed TB. Population pharmacokinetic models used plasma and intrapulmonary drug levels at 8 and 16 weeks. Pharmacokinetic-pharmacodynamic relationships were investigated using individual-level measures of drug exposure (area-under-the-concentration-time-curve [AUC] and Cmax) for rifampicin, isoniazid, pyrazinamide, and ethambutol, in plasma, epithelial lining fluid, and alveolar cells as covariates in the bacillary elimination models. RESULTS: Among 157 participants (58% human immunodeficiency virus [HIV] coinfected), drug exposure in plasma or alveolar cells was not associated with sputum bacillary clearance. Higher peak concentrations (Cmax) or exposure (AUC) to rifampicin or isoniazid in epithelial lining fluid was associated with more rapid bacillary elimination and shorter time to sputum negativity. More extensive disease on baseline chest radiograph was associated with slower bacillary elimination. Clinical outcome was captured in 133 participants, with 15 (11%) unfavorable outcomes recorded (recurrent TB, failed treatment, or death). No relationship between BER and late clinical outcome was identified. CONCLUSIONS: Greater intrapulmonary drug exposure to rifampicin or isoniazid in the epithelial lining fluid was associated with more rapid bacillary clearance. Higher doses of rifampicin and isoniazid may result in sustained high intrapulmonary drug exposure, rapid bacillary clearance, shorter treatment duration and better treatment outcomes.
Assuntos
Bacillus , Tuberculose Pulmonar , Adulto , Humanos , Isoniazida/uso terapêutico , Isoniazida/farmacocinética , Rifampina/farmacocinética , Escarro/microbiologia , Antituberculosos/farmacocinética , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Pirazinamida/farmacocinética , Etambutol/uso terapêuticoRESUMO
OBJECTIVES: Ethambutol protects against the development of resistance to co-administered drugs in the intensive phase of first-line anti-TB treatment in children. It is especially relevant in settings with a high prevalence of HIV or isoniazid resistance. We describe the population pharmacokinetics of ethambutol in children with TB to guide dosing in this population. METHODS: We pooled data from 188 intensively sampled children from the DATiC, DNDi and SHINE studies, who received 15-25â mg/kg ethambutol daily according to WHO guidelines. The median (range) age and weight of the cohort were 1.9 (0.3-12.6)â years and 9.6 (3.9-34.5)â kg, respectively. Children with HIV (HIV+; nâ=â103) received ART (lopinavir/ritonavir in 92%). RESULTS: Ethambutol pharmacokinetics were best described by a two-compartment model with first-order elimination and absorption transit compartments. Clearance was estimated to reach 50% of its mature value by 2â months after birth and 99% by 3â years. Typical steady-state apparent clearance in a 10â kg child was 15.9â L/h. In HIV+ children on lopinavir/ritonavir, bioavailability was reduced by 32% [median (IQR) steady-state Cmaxâ=â0.882 (0.669-1.28) versus 1.66 (1.21-2.15)â mg/L). In young children, bioavailability correlated with age. At birth, bioavailability was 73.1% of that in children 3.16â years or older. CONCLUSIONS: To obtain exposure within the 2-6â mg/L recommended range for Cmax, the current doses must be doubled (or tripled with HIV+ children on lopinavir/ritonavir) for paediatric patients. This raises concerns regarding the potential for ocular toxicity, which would require evaluation.
Assuntos
Fármacos Anti-HIV , Infecções por HIV , Fármacos Anti-HIV/uso terapêutico , Antituberculosos/farmacocinética , Antituberculosos/uso terapêutico , Criança , Pré-Escolar , Etambutol/farmacocinética , Etambutol/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Recém-Nascido , Lopinavir/farmacocinética , Lopinavir/uso terapêutico , RitonavirRESUMO
BACKGROUND: The World Health Organization (WHO) End TB Strategy stresses universal access to drug susceptibility testing (DST). DST determines whether Mycobacterium tuberculosis bacteria are susceptible or resistant to drugs. Xpert MTB/XDR is a rapid nucleic acid amplification test for detection of tuberculosis and drug resistance in one test suitable for use in peripheral and intermediate level laboratories. In specimens where tuberculosis is detected by Xpert MTB/XDR, Xpert MTB/XDR can also detect resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin. OBJECTIVES: To assess the diagnostic accuracy of Xpert MTB/XDR for pulmonary tuberculosis in people with presumptive pulmonary tuberculosis (having signs and symptoms suggestive of tuberculosis, including cough, fever, weight loss, night sweats). To assess the diagnostic accuracy of Xpert MTB/XDR for resistance to isoniazid, fluoroquinolones, ethionamide, and amikacin in people with tuberculosis detected by Xpert MTB/XDR, irrespective of rifampicin resistance (whether or not rifampicin resistance status was known) and with known rifampicin resistance. SEARCH METHODS: We searched multiple databases to 23 September 2021. We limited searches to 2015 onwards as Xpert MTB/XDR was launched in 2020. SELECTION CRITERIA: Diagnostic accuracy studies using sputum in adults with presumptive or confirmed pulmonary tuberculosis. Reference standards were culture (pulmonary tuberculosis detection); phenotypic DST (pDST), genotypic DST (gDST),composite (pDST and gDST) (drug resistance detection). DATA COLLECTION AND ANALYSIS: Two review authors independently reviewed reports for eligibility and extracted data using a standardized form. For multicentre studies, we anticipated variability in the type and frequency of mutations associated with resistance to a given drug at the different centres and considered each centre as an independent study cohort for quality assessment and analysis. We assessed methodological quality with QUADAS-2, judging risk of bias separately for each target condition and reference standard. For pulmonary tuberculosis detection, owing to heterogeneity in participant characteristics and observed specificity estimates, we reported a range of sensitivity and specificity estimates and did not perform a meta-analysis. For drug resistance detection, we performed meta-analyses by reference standard using bivariate random-effects models. Using GRADE, we assessed certainty of evidence of Xpert MTB/XDR accuracy for detection of resistance to isoniazid and fluoroquinolones in people irrespective of rifampicin resistance and to ethionamide and amikacin in people with known rifampicin resistance, reflecting real-world situations. We used pDST, except for ethionamide resistance where we considered gDST a better reference standard. MAIN RESULTS: We included two multicentre studies from high multidrug-resistant/rifampicin-resistant tuberculosis burden countries, reporting on six independent study cohorts, involving 1228 participants for pulmonary tuberculosis detection and 1141 participants for drug resistance detection. The proportion of participants with rifampicin resistance in the two studies was 47.9% and 80.9%. For tuberculosis detection, we judged high risk of bias for patient selection owing to selective recruitment. For ethionamide resistance detection, we judged high risk of bias for the reference standard, both pDST and gDST, though we considered gDST a better reference standard. Pulmonary tuberculosis detection - Xpert MTB/XDR sensitivity range, 98.3% (96.1 to 99.5) to 98.9% (96.2 to 99.9) and specificity range, 22.5% (14.3 to 32.6) to 100.0% (86.3 to 100.0); median prevalence of pulmonary tuberculosis 91.3%, (interquartile range, 89.3% to 91.8%), (2 studies; 1 study reported on 2 cohorts, 1228 participants; very low-certainty evidence, sensitivity and specificity). Drug resistance detection People irrespective of rifampicin resistance - Isoniazid resistance: Xpert MTB/XDR summary sensitivity and specificity (95% confidence interval (CI)) were 94.2% (87.5 to 97.4) and 98.5% (92.6 to 99.7) against pDST, (6 cohorts, 1083 participants, moderate-certainty evidence, sensitivity and specificity). - Fluoroquinolone resistance: Xpert MTB/XDR summary sensitivity and specificity were 93.2% (88.1 to 96.2) and 98.0% (90.8 to 99.6) against pDST, (6 cohorts, 1021 participants; high-certainty evidence, sensitivity; moderate-certainty evidence, specificity). People with known rifampicin resistance - Ethionamide resistance: Xpert MTB/XDR summary sensitivity and specificity were 98.0% (74.2 to 99.9) and 99.7% (83.5 to 100.0) against gDST, (4 cohorts, 434 participants; very low-certainty evidence, sensitivity and specificity). - Amikacin resistance: Xpert MTB/XDR summary sensitivity and specificity were 86.1% (75.0 to 92.7) and 98.9% (93.0 to 99.8) against pDST, (4 cohorts, 490 participants; low-certainty evidence, sensitivity; high-certainty evidence, specificity). Of 1000 people with pulmonary tuberculosis, detected as tuberculosis by Xpert MTB/XDR: - where 50 have isoniazid resistance, 61 would have an Xpert MTB/XDR result indicating isoniazid resistance: of these, 14/61 (23%) would not have isoniazid resistance (FP); 939 (of 1000 people) would have a result indicating the absence of isoniazid resistance: of these, 3/939 (0%) would have isoniazid resistance (FN). - where 50 have fluoroquinolone resistance, 66 would have an Xpert MTB/XDR result indicating fluoroquinolone resistance: of these, 19/66 (29%) would not have fluoroquinolone resistance (FP); 934 would have a result indicating the absence of fluoroquinolone resistance: of these, 3/934 (0%) would have fluoroquinolone resistance (FN). - where 300 have ethionamide resistance, 296 would have an Xpert MTB/XDR result indicating ethionamide resistance: of these, 2/296 (1%) would not have ethionamide resistance (FP); 704 would have a result indicating the absence of ethionamide resistance: of these, 6/704 (1%) would have ethionamide resistance (FN). - where 135 have amikacin resistance, 126 would have an Xpert MTB/XDR result indicating amikacin resistance: of these, 10/126 (8%) would not have amikacin resistance (FP); 874 would have a result indicating the absence of amikacin resistance: of these, 19/874 (2%) would have amikacin resistance (FN). AUTHORS' CONCLUSIONS: Review findings suggest that, in people determined by Xpert MTB/XDR to be tuberculosis-positive, Xpert MTB/XDR provides accurate results for detection of isoniazid and fluoroquinolone resistance and can assist with selection of an optimised treatment regimen. Given that Xpert MTB/XDR targets a limited number of resistance variants in specific genes, the test may perform differently in different settings. Findings in this review should be interpreted with caution. Sensitivity for detection of ethionamide resistance was based only on Xpert MTB/XDR detection of mutations in the inhA promoter region, a known limitation. High risk of bias limits our confidence in Xpert MTB/XDR accuracy for pulmonary tuberculosis. Xpert MTB/XDR's impact will depend on its ability to detect tuberculosis (required for DST), prevalence of resistance to a given drug, health care infrastructure, and access to other tests.
Assuntos
Antibióticos Antituberculose , Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Adulto , Amicacina/farmacologia , Amicacina/uso terapêutico , Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/uso terapêutico , Farmacorresistência Bacteriana/genética , Etionamida/farmacologia , Etionamida/uso terapêutico , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Humanos , Isoniazida/farmacologia , Isoniazida/uso terapêutico , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Rifampina/uso terapêutico , Sensibilidade e Especificidade , Tuberculose dos Linfonodos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológicoRESUMO
BACKGROUND: Further work is required to understand the intrapulmonary pharmacokinetics of first-line anti-tuberculosis drugs. This study aimed to describe the plasma and intrapulmonary pharmacokinetics of rifampicin, isoniazid, pyrazinamide, and ethambutol, and explore relationships with clinical treatment outcomes in patients with pulmonary tuberculosis. METHODS: Malawian adults with a first presentation of microbiologically confirmed pulmonary tuberculosis received standard 6-month first-line therapy. Plasma and intrapulmonary samples were collected 8 and 16 weeks into treatment and drug concentrations measured in plasma, lung/airway epithelial lining fluid (ELF), and alveolar cells. Population pharmacokinetic modeling generated estimates of drug exposure (Cmax and AUC) from individual-level post hoc Bayesian estimates of plasma and intrapulmonary pharmacokinetics. RESULTS: One-hundred fifty-seven patients (58% HIV coinfected) participated. Despite standard weight-based dosing, peak plasma concentrations of first-line drugs were below therapeutic drug-monitoring targets. Rifampicin concentrations were low in all 3 compartments. Isoniazid, pyrazinamide, and ethambutol achieved higher concentrations in ELF and alveolar cells than plasma. Isoniazid and pyrazinamide concentrations were 14.6-fold (95% CI, 11.2-18.0-fold) and 49.8-fold (95% CI, 34.2-65.3-fold) higher in ELF than plasma, respectively. Ethambutol concentrations were highest in alveolar cells (alveolar cell-plasma ratio, 15.0; 95% CI, 11.4-18.6). Plasma or intrapulmonary pharmacokinetics did not predict clinical treatment response. CONCLUSIONS: We report differential drug concentrations between plasma and the lung. While plasma concentrations were below therapeutic monitoring targets, accumulation of drugs at the site of disease may explain the success of the first-line regimen. The low rifampicin concentrations observed in all compartments lend strong support for ongoing clinical trials of high-dose rifampicin regimens.
Assuntos
Antituberculosos , Tuberculose , Antituberculosos/uso terapêutico , Teorema de Bayes , Etambutol , Humanos , Isoniazida , Pirazinamida , Tuberculose/tratamento farmacológicoRESUMO
This paper describes an intermolecular cross-selective [2 + 2] photocycloaddition reaction of exocyclic arylidene oxetanes, azetidines, and cyclobutanes with simple electron-deficient alkenes. The reaction takes place under mild conditions using a commercially available Ir(III) photosensitizer upon blue light irradiation. This transformation provides access to a range of polysubstituted 2-oxaspiro[3.3]heptane, 2-azaspiro[3.3]heptane, and spiro[3.3]heptane motifs, which are of prime interest in medicinal chemistry as gem-dimethyl and carbonyl bioisosteres. A variety of further transformations of the initial cycloadducts are demonstrated to highlight the versatility of the products and enable selective access to either of a syn- or an anti-diastereoisomer through kinetic or thermodynamic epimerization, respectively. Mechanistic experiments and DFT calculations suggest that this reaction proceeds through a sensitized energy transfer pathway.
RESUMO
Among aromatic compounds, borazarenes represent a significant class of isosteres in which carbon-carbon bonds have been replaced by B-N bonds. Described herein is a summary of the selective reactions that have been developed for known systems, as well as a summary of computationally-based predictions of selectivities that might be anticipated in reactions of yet unrealized substructures.
RESUMO
BACKGROUND: Large sample sizes are often required to detect statistically significant associations between pharmacogenetic markers and treatment response. Meta-analysis may be performed to synthesize data from several studies, increasing sample size and, consequently, power to detect significant genetic effects. However, performing robust synthesis of data from pharmacogenetic studies is often challenging because of poor reporting of key data in study reports. There is currently no guideline for the reporting of pharmacogenetic studies that has been developed using a widely accepted robust methodology. The objective of this project was to develop the STrengthening the Reporting Of Pharmacogenetic Studies (STROPS) guideline. METHODS AND FINDINGS: We established a preliminary checklist of reporting items to be considered for inclusion in the guideline. We invited representatives of key stakeholder groups to participate in a 2-round Delphi survey. A total of 52 individuals participated in both rounds of the survey, scoring items with regards to their importance for inclusion in the STROPS guideline. We then held a consensus meeting, at which 8 individuals considered the results of the Delphi survey and voted on whether each item ought to be included in the final guideline. The STROPS guideline consists of 54 items and is accompanied by an explanation and elaboration document. The guideline contains items that are particularly important in the field of pharmacogenetics, such as the drug regimen of interest and whether adherence to treatment was accounted for in the conducted analyses. The guideline also requires that outcomes be clearly defined and justified, because in pharmacogenetic studies, there may be a greater number of possible outcomes than in other types of study (for example, disease-gene association studies). A limitation of this project is that our consensus meeting involved a small number of individuals, the majority of whom are based in the United Kingdom. CONCLUSIONS: Our aim is for the STROPS guideline to improve the transparency of reporting of pharmacogenetic studies and also to facilitate the conduct of high-quality systematic reviews and meta-analyses. We encourage authors to adhere to the STROPS guideline when publishing pharmacogenetic studies.
Assuntos
Farmacogenética/métodos , Testes Farmacogenômicos/normas , Testes Farmacogenômicos/tendências , Adulto , Lista de Checagem , Consenso , Técnica Delphi , Feminino , Estudos de Associação Genética , Objetivos , Humanos , Masculino , Pessoa de Meia-Idade , Farmacogenética/normas , Política , Editoração/normas , Projetos de Pesquisa/normas , Participação dos Interessados , Inquéritos e Questionários , Reino UnidoRESUMO
BACKGROUND: People with recurrent or drug-resistant TB require long courses of intramuscular injections. We evaluate a novel system in which patient-nominated lay carers were trained to deliver intramuscular injections to patients in their own homes. METHODS: A pragmatic, individually randomised non-inferiority trial was conducted at two hospitals in Malawi. Adults starting TB retreatment were recruited. Patients randomised to the intervention received home-based care from patient-nominated lay people trained to deliver intramuscular streptomycin. Patients receiving standard care were admitted to hospital for 2 months of streptomycin. The primary outcome was successful treatment (alive and on treatment) at the end of the intervention. RESULTS: Of 456 patients screened, 204 participants were randomised. The trial was terminated early due to futility. At the end of the intervention, 97/101 (96.0%) in the hospital arm were still alive and on treatment compared with 96/103 (93.2%) in the home-based arm (risk difference -0.03 (95% CI -0.09 to 0.03); p value 0.538). There were no differences in the proportion completing 8 months of anti-TB treatment; or the proportion experiencing 2-month sputum culture conversion. The mean cost of hospital-based management was US$1546.3 per person, compared to US$729.2 for home-based management. Home-based care reduced risk of catastrophic household costs by 84%. CONCLUSIONS: Although this trial failed to meet target recruitment, the available data demonstrate that training patient-nominated lay people has potential to provide a feasible solution to the operational challenges associated with delivering long-term-injectable drugs to people with recurrent or drug-resistant TB in resource-limited settings, and substantially reduce costs. Further data under operational conditions are required. TRIAL REGISTRATION NUMBER: ISRCTN05815615.
Assuntos
Antibacterianos/administração & dosagem , Antituberculosos/administração & dosagem , Cuidadores , Assistência Domiciliar , Injeções Intramusculares/enfermagem , Estreptomicina/administração & dosagem , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Adulto , Feminino , Humanos , Malaui , MasculinoRESUMO
In this comparative biomarker study, we analysed 1768 serial sputum samples from 178 patients at 4 sites in Southeast Africa. We show that tuberculosis Molecular Bacterial Load Assay (TB-MBLA) reduces time-to-TB-bacillary-load-result from days/weeks by culture to hours and detects early patient treatment response. By day 14 of treatment, 5% of patients had cleared bacillary load to zero, rising to 58% by 12th week of treatment. Fall in bacillary load correlated with mycobacterial growth indicator tube culture time-to-positivity (Spearmans r=-0.51, 95% CI (-0.56 to -0.46), p<0.0001). Patients with high pretreatment bacillary burdens (above the cohort bacillary load average of 5.5log10eCFU/ml) were less likely to convert-to-negative by 8th week of treatment than those with a low burden (below cohort bacillary load average), p=0.0005, HR 3.1, 95% CI (1.6 to 5.6) irrespective of treatment regimen. TB-MBLA distinguished the bactericidal effect of regimens revealing the moxifloxacin-20 mg rifampicin regimen produced a shorter time to bacillary clearance compared with standard-of-care regimen, p=0.008, HR 2.9, 95% CI (1.3 to 6.7). Our data show that the TB-MBLA could inform clinical decision making in real-time and expedite drug TB clinical trials.
Assuntos
Antibióticos Antituberculose/uso terapêutico , Mycobacterium tuberculosis/crescimento & desenvolvimento , Escarro/microbiologia , Tuberculose Pulmonar/microbiologia , Adulto , Carga Bacteriana , Biomarcadores/metabolismo , Feminino , Seguimentos , Humanos , Masculino , Mycobacterium tuberculosis/isolamento & purificação , Prognóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/metabolismoRESUMO
Geraint Davies and colleagues discuss the potential for innovative early-phase clinical trial methods and technologies to reduce risk and speed up drug development for tuberculosis.
Assuntos
Antituberculosos/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Desenvolvimento de Medicamentos/tendências , Projetos de Pesquisa/tendências , Tuberculose/tratamento farmacológico , Fluxo de Trabalho , Antituberculosos/efeitos adversos , Antituberculosos/farmacocinética , Quimioterapia Combinada , Humanos , Segurança do Paciente , Medição de Risco , Fatores de Risco , Resultado do Tratamento , Tuberculose/diagnóstico , Tuberculose/microbiologiaRESUMO
Modulation of growth rate in Mycobacterium tuberculosis is key to its survival in the host; particularly with regard to its adaptation during chronic infection when the growth rate is very slow. The resulting physiological changes will influence the way this pathogen interacts with the host and responds to antibiotics. Therefore, it is important that we understand how growth rate impacts antibiotic efficacy, particularly with respect to recovery/relapse. This is the first study that has asked how growth rates influence the mycobacterial responses to combinations of frontline antimycobacterials, isoniazid (INH), rifampicin (RIF), and pyrazinamide (PZA), using continuous cultures. Time-course profiles of log-transformed total viable counts for cultures, controlled at either a fast growth rate (23.1. mean generation time (MGT)) or slow growth rate (69.3h MGT), were analysed with the fitting of a mathematical model by nonlinear regression that accounted for the dilution rate in the chemostat, and profiled kill rates and recovery in culture. Using this approach, we show that populations growing more slowly were generally less susceptible to all treatments. We observed a higher kill rate associated with INH (compared to RIF or PZA) and the appearance of re-growth. In line with this observation, re-growth was not observed with RIF-exposure, which provided a slower bactericidal response. The sequential additions of RIF and PZA did not eliminate re-growth. We consider here that faster, early bactericidal activity is not what is required for successful sterilisation of M. tuberculosis, but instead slower elimination of bacilli followed by reduced recovery of the bacterial population.
RESUMO
The molecular bacterial load (MBL) assay is a new tuberculosis biomarker which provides results in â¼4 hours. The relationship between MBL and time-to-positivity (TTP) has not been thoroughly studied, and predictive models do not exist. We aimed to develop a model for MBL and identify the MBL-TTP relationship in patients. The model was developed on data from 105 tuberculosis patients from Malawi, Mozambique, and Tanzania with joint MBL and TTP observations quantified from patient sputum collected for 12 weeks. MBL was quantified using PCR of mycobacterial RNA and TTP using the mycobacterial growth indicator tube (MGIT) 960 system. Treatment consisted of isoniazid, pyrazinamide, and ethambutol in standard doses together with rifampin 10 or 35 mg/kg of body weight. The developed MBL-TTP model included several linked submodels, a component describing decline of bacterial load in sputum, another component describing growth in liquid culture, and a hazard model translating bacterial growth into a TTP signal. Additional components for contaminated and negative TTP samples were included. Visual predictive checks performed using the developed model gave good description of the observed data. The model predicted greater total sample loss for TTP than MBL due to contamination and negative samples. The model detected an increase in bacterial killing for 35 versus 10 mg/kg rifampin (P = 0.002). In conclusion, a combined model for MBL and TTP was developed that described the MBL-TTP relationship. The full MBL-TTP model or each submodel was used separately. Second, the model can be used to predict biomarker response for MBL given TTP data or vice versa in historical or future trials.
Assuntos
Antituberculosos/farmacologia , Bioensaio , DNA Bacteriano/efeitos dos fármacos , Modelos Estatísticos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Pulmonar/tratamento farmacológico , Antituberculosos/farmacocinética , Carga Bacteriana/efeitos dos fármacos , Biomarcadores Farmacológicos/metabolismo , Simulação por Computador , Cálculos da Dosagem de Medicamento , Monitoramento de Medicamentos , Etambutol/farmacocinética , Etambutol/farmacologia , Feminino , Humanos , Isoniazida/farmacocinética , Isoniazida/farmacologia , Malaui , Masculino , Moçambique , Mycobacterium tuberculosis/crescimento & desenvolvimento , Pirazinamida/farmacocinética , Pirazinamida/farmacologia , Rifampina/farmacocinética , Rifampina/farmacologia , Escarro/microbiologia , Tanzânia , Fatores de Tempo , Tuberculose Pulmonar/microbiologiaRESUMO
OBJECTIVES: Non-replicating persistent Mycobacterium tuberculosis is difficult to kill since the organisms become undetectable using our conventional diagnostic methods and tolerant to anti-TB drugs. Resuscitation-promoting factors (RPFs) have been used to 'wake up' non-replicating persisters, making them easy to detect. Bedaquiline is a novel bactericidal and sterilizing anti-TB drug with the potential to eradicate RPF-dependent persistent M. tuberculosis. We present the first head-to-head comparison between the standard anti-TB regimen and a bedaquiline-modified regimen in eradicating RPF-dependent persistent M. tuberculosis, using the well-defined Cornell Model. METHODS: M. tuberculosis-infected mice were treated for 14 weeks with either the standard regimen (rifampicin, isoniazid, pyrazinamide and ethambutol) or the same regimen where ethambutol was replaced by bedaquiline. The efficacy of both drug regimens was measured by cfu count elimination and eradication of persistent bacteria, which was evaluated using culture filtrate (CF) containing RPFs. At the end of treatment, the remaining cfu count-negative mice were administered hydrocortisone for 8 weeks. The induced disease relapse rates were determined by the percentage of mice that became positive for M. tuberculosis in the lung, spleen or both. RESULTS: The bedaquiline-containing regimen achieved total organ cfu count clearance at 8 weeks after treatment initiation, faster than the standard regimen (14 weeks). Importantly, the bedaquiline-containing regimen removed CF-dependent persistent bacilli at 8 weeks, leading to no disease relapse. CONCLUSIONS: A bedaquiline regimen eradicated persistent TB infections and completely prevented disease relapse in mice. These findings offer the potential for a faster cure for TB, with reduced relapse rate.
Assuntos
Antituberculosos/farmacologia , Diarilquinolinas/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Animais , Modelos Animais de Doenças , Camundongos , Recidiva , Resultado do TratamentoRESUMO
Background: Poor response to TB therapy might be attributable to subtherapeutic levels in drug-compliant patients. Pharmacokinetic parameters can be affected by comorbidities or the interaction of drugs with food. Objectives: This study aimed to determine the effect of food intake upon pharmacokinetics of rifampicin and isoniazid in a Peruvian population with TB. Methods: Rifampicin and isoniazid levels were analysed at 2, 4 and 6 h after drug intake in both fasting and non-fasting states using LC-MS methods. Results: Sixty patients participated in the study. The median rifampicin Cmax and AUC0-6 were higher during fasting than non-fasting: 7.02 versus 6.59 mg/L (P = 0.054) and 28.64 versus 24.31 mg·h/L (P = 0.002). There was a statistically significant delay overall of non-fasting Tmax compared with the fasting state Tmax (P = 0.005). In the multivariate analysis, besides the effect of fasting, Cmax for females was 20% higher than for males (P = 0.03). Concerning isoniazid, there were significant differences in the Cmax during non-fasting (median = 3.51 mg/L) compared with fasting (4.54 mg/L). The isoniazid dose received had an effect upon the isoniazid levels (1.26, P = 0.038). In the multivariate analysis, isoniazid exposure during fasting was found to be 14% higher than during non-fasting (CI = 1.02-1.28, P < 0.001). Neither radiological extent of the disease nor consumption of food with drug intake nor pharmacokinetics of rifampicin or isoniazid was associated with a poorer treatment outcome. Conclusions: Rifampicin in particular and isoniazid pharmacokinetics were significantly affected by the intake of the drug with food between and within individuals.