Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Commun Biol ; 1: 146, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30272022

RESUMO

Autoantibody-mediated diseases are currently treated with intravenous immunoglobulin, which is thought to act in part via blockade of Fc gamma receptors, thereby inhibiting autoantibody effector functions and subsequent pathology. We aimed to develop recombinant molecules with enhanced Fc receptor avidity and thus increased potency over intravenous immunoglobulin. Here we describe the molecular engineering of human Fc hexamers and explore their therapeutic and safety profiles. We show Fc hexamers were more potent than IVIG in phagocytosis blockade and disease models. However, in human whole-blood safety assays incubation with IgG1 isotype Fc hexamers resulted in cytokine release, platelet and complement activation, whereas the IgG4 version did not. We used a statistically designed mutagenesis approach to identify the key Fc residues involved in these processes. Cytokine release was found to be dependent on neutrophil FcγRIIIb interactions with L234 and A327 in the Fc. Therefore, Fc hexamers provide unique insights into Fc receptor biology.

2.
Clin Vaccine Immunol ; 20(3): 377-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23324518

RESUMO

Clostridium difficile infections are a major cause of antibiotic-associated diarrhea in hospital and care facility patients. In spite of the availability of effective antibiotic treatments, C. difficile infection (CDI) is still a major cause of patient suffering, death, and substantial health care costs. Clostridium difficile exerts its major pathological effects through the actions of two protein exotoxins, TcdA and TcdB, which bind to and disrupt gut tissue. Antibiotics target the infecting bacteria but not the exotoxins. Administering neutralizing antibodies against TcdA and TcdB to patients receiving antibiotic treatment might modulate the effects of the exotoxins directly. We have developed a mixture of three humanized IgG1 monoclonal antibodies (MAbs) which neutralize TcdA and TcdB to address three clinical needs: reduction of the severity and duration of diarrhea, reduction of death rates, and reduction of the rate of recurrence. The UCB MAb mixture showed higher potency in a variety of in vitro binding and neutralization assays (∼10-fold improvements), higher levels of protection in a hamster model of CDI (82% versus 18% at 28 days), and higher valencies of toxin binding (12 versus 2 for TcdA and 3 versus 2 for TcdB) than other agents in clinical development. Comparisons of the MAb properties also offered some insight into the potential relative importance of TcdA and TcdB in the disease process.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Proteínas de Bactérias/antagonistas & inibidores , Toxinas Bacterianas/antagonistas & inibidores , Infecções por Clostridium/terapia , Enterotoxinas/antagonistas & inibidores , Fatores Imunológicos/uso terapêutico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Proteínas de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Cricetinae , Modelos Animais de Doenças , Enterotoxinas/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/uso terapêutico , Fatores Imunológicos/imunologia , Fatores Imunológicos/isolamento & purificação , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA