Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 47(4): 1053-1069, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38017668

RESUMO

Southern California experienced unprecedented megadrought between 2012 and 2018. During this time, Malosma laurina, a chaparral species normally resilient to single-year intense drought, developed extensive mortality exceeding 60% throughout low-elevation coastal populations of the Santa Monica Mountains. We assessed the physiological mechanisms by which the advent of megadrought predisposed M. laurina to extensive shoot dieback and whole-plant death. We found that hydraulic conductance of stem xylem (Ks, native ) was reduced seven to 11-fold in dieback adult and resprout branches, respectively. Staining of stem xylem vessels revealed that dieback plants experienced 68% solid-blockage, explaining the reduction in water transport. Following Koch's postulates, persistent isolation of a microorganism in stem xylem of dieback plants but not healthy controls indicated that the causative agent of xylem blockage was an opportunistic endophytic fungus, Botryosphaeria dothidea. We inoculated healthy M. laurina saplings with fungal isolates and compared hyphal elongation rates under well-watered, water-deficit, and carbon-deficit treatments. Relative to controls, we found that both water deficit and carbon-deficit increased hyphal extension rates and the incidence of shoot dieback.


Assuntos
Secas , Água , Xilema/fisiologia , Carbono
2.
Plant Cell Environ ; 46(7): 2017-2030, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37165940

RESUMO

Plants can detect herbivore-induced plant volatiles (HIPVs) from their damaged neighbours and respond by enhancing or priming their defenses against future herbivore attack. Plant communication and defense priming by volatile cues has been well documented, however, the extent to which plants are able to perceive and respond to these cues across different environmental contexts remains poorly understood. We investigated how abiotic changes that modulate stomatal conductance and/or defense signalling affect the ability of maize plants to perceive HIPVs and respond by priming their defenses. During light exposure, when stomata were open and conditions allowed for defense signal biosynthesis, the individual compounds indole and (Z)-3-hexenyl acetate primed maize defenses. Neither compound primed defenses under environmental conditions that closed stomata and/or altered defense signalling. Moreover, plants were not primed when exposed to indole or (Z)-3-hexenyl acetate in darkness (while stomata were closed) and then subjected to simulated herbivory in the light, to ensure defense induction. The full blend of HIPVs primed maize defenses in light conditions but suppressed defense induction during dark exposure and wounding. These findings indicate that environmental context is important for plant communication and defense priming and suggest that stomata play a role in plant perception of HIPVs.


Assuntos
Compostos Orgânicos Voláteis , Plantas , Acetatos , Herbivoria , Indóis
3.
J Appl Clin Med Phys ; 24(6): e13926, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36800309

RESUMO

PURPOSE: This article describes our experience in implementation of superficial radiation therapy (SRT) using SRT-100 Vision™ for non-melanoma skin cancer. METHODS: Following the American Association of Physicists in Medicine Task Group-61 protocol, absolute output (absorbed dose to water at surface (cGy/min)) was measured for three energies (50, 70, and 100 kV) and for six applicators (1.5-5.0 cm in diameter). Percent depth dose (PDD) and profiles were also measured. Timer testing and ultrasound testing were performed. A treatment time calculation worksheet was created. Quality assurance (QA) of SRT-100 Vision was implemented. After treatment workflow for our clinic was developed, end-to-end (E2E) testing was performed using a Rando phantom. Considerations for treatment using SRT-100 Vision were made. RESULTS: Absolute output (cGy/min) decreases as energy increases and applicator size decreases. Due to scatter from the applicator, PDD at depths ≤5 mm does not follow conventional trends but PDD at depths ≥15 mm increases with increasing applicator size. Profiles for the 5 cm applicator do not have strong dependence on depth except profiles at 5 mm for 50 kV. Timer/end errors are negligible for all three energies. Ultrasound images confirm allowed field of view and depth as well as no image artifacts and spatial integrity. Daily, monthly and annual QA of SRT-100 Vision implemented in our clinic is listed in a table format. E2E testing results (<1%) demonstrate the functionality and performance of our treatment workflow. Our considerations for SRT treatment include patient, applicator size and energy selections, patient setup, and shields. CONCLUSIONS: This article is expected to serve as guidance for Radiation Oncology and/or Dermatology clinics aspiring to initiate an SRT program in their clinics.


Assuntos
Radioterapia (Especialidade) , Neoplasias Cutâneas , Humanos , Dosagem Radioterapêutica , Imagens de Fantasmas , Neoplasias Cutâneas/radioterapia , Radiometria/métodos
4.
J Exp Bot ; 71(3): 1139-1150, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31641748

RESUMO

Desiccation-tolerant (DT) organisms can lose nearly all their water without dying. Desiccation tolerance allows organisms to survive in a nearly completely dehydrated, dormant state. At the cellular level, sugars and proteins stabilize cellular components and protect them from oxidative damage. However, there are few studies of the dynamics and drivers of whole-plant recovery in vascular DT plants. In vascular DT plants, whole-plant desiccation recovery (resurrection) depends not only on cellular rehydration, but also on the recovery of organs with unequal access to water. In this study, in situ natural and artificial irrigation experiments revealed the dynamics of desiccation recovery in two DT fern species. Organ-specific irrigation experiments revealed that the entire plant resurrected when water was supplied to roots, but leaf hydration alone (foliar water uptake) was insufficient to rehydrate the stele and roots. In both species, pressure applied to petioles of excised desiccated fronds resurrected distal leaf tissue, while capillarity alone was insufficient to resurrect distal pinnules. Upon rehydration, sucrose levels in the rhizome and stele dropped dramatically as starch levels rose, consistent with the role of accumulated sucrose as a desiccation protectant. These findings provide insight into traits that facilitate desiccation recovery in dryland ferns associated with chaparral vegetation of southern California.


Assuntos
Raízes de Plantas/fisiologia , Pteridaceae/fisiologia , Água/fisiologia , Dessecação , Chuva , Sacarose/metabolismo
5.
New Phytol ; 224(1): 97-105, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31318447

RESUMO

Desiccation-tolerant (DT) plants can dry past -100 MPa and subsequently recover function upon rehydration. Vascular DT plants face the unique challenges of desiccating and rehydrating complex tissues without causing structural damage. However, these dynamics have not been studied in intact DT plants. We used high resolution micro-computed tomography (microCT), light microscopy, and fluorescence microscopy to characterize the dynamics of tissue desiccation and rehydration in petioles (stipes) of intact DT ferns. During desiccation, xylem conduits in stipes embolized before cellular dehydration of living tissues within the vascular cylinder. During resurrection, the chlorenchyma and phloem within the stipe vascular cylinder rehydrated before xylem refilling. We identified unique stipe traits that may facilitate desiccation and resurrection of the vascular system, including xylem conduits containing pectin (which may confer flexibility and wettability); chloroplasts within the vascular cylinder; and an endodermal layer impregnated with hydrophobic substances that impede apoplastic leakage while facilitating the upward flow of water within the vascular cylinder. Resurrection ferns are a novel system for studying extreme dehydration recovery and embolism repair in the petioles of intact plants. The unique anatomical traits identified here may contribute to the spatial and temporal dynamics of water movement observed during desiccation and resurrection.


Assuntos
Adaptação Fisiológica , Dessecação , Gleiquênias/fisiologia , Folhas de Planta/fisiologia , Água , Microtomografia por Raio-X , Desidratação , Feixe Vascular de Plantas/anatomia & histologia
6.
New Phytol ; 223(1): 134-149, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30843202

RESUMO

Given increasing water deficits across numerous ecosystems world-wide, it is urgent to understand the sequence of failure of leaf function during dehydration. We assessed dehydration-induced losses of rehydration capacity and maximum quantum yield of the photosystem II (Fv /Fm ) in the leaves of 10 diverse angiosperm species, and tested when these occurred relative to turgor loss, declines of stomatal conductance gs , and hydraulic conductance Kleaf , including xylem and outside xylem pathways for the same study plants. We resolved the sequences of relative water content and leaf water potential Ψleaf thresholds of functional impairment. On average, losses of leaf rehydration capacity occurred at dehydration beyond 50% declines of gs , Kleaf and turgor loss point. Losses of Fv /Fm occurred after much stronger dehydration and were not recovered with leaf rehydration. Across species, tissue dehydration thresholds were intercorrelated, suggesting trait co-selection. Thresholds for each type of functional decline were much less variable across species in terms of relative water content than Ψleaf . The stomatal and leaf hydraulic systems show early functional declines before cell integrity is lost. Substantial damage to the photochemical apparatus occurs at extreme dehydration, after complete stomatal closure, and seems to be irreversible.


Assuntos
Processos Fotoquímicos , Estômatos de Plantas/citologia , Estômatos de Plantas/fisiologia , Água , Adaptação Fisiológica , Clorofila/metabolismo , Desidratação , Secas , Fluorescência , Magnoliopsida/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Teoria Quântica
7.
New Phytol ; 209(3): 945-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26443127

RESUMO

Understanding and predicting plant response to disturbance is of paramount importance in our changing world. Resprouting ability is often considered a simple qualitative trait and used in many ecological studies. Our aim is to show some of the complexities of resprouting while highlighting cautions that need be taken in using resprouting ability to predict vegetation responses across disturbance types and biomes. There are marked differences in resprouting depending on the disturbance type, and fire is often the most severe disturbance because it includes both defoliation and lethal temperatures. In the Mediterranean biome, there are differences in functional strategies to cope with water deficit between resprouters (dehydration avoiders) and nonresprouters (dehydration tolerators); however, there is little research to unambiguously extrapolate these results to other biomes. Furthermore, predictions of vegetation responses to changes in disturbance regimes require consideration not only of resprouting, but also other relevant traits (e.g. seeding, bark thickness) and the different correlations among traits observed in different biomes; models lacking these details would behave poorly at the global scale. Overall, the lessons learned from a given disturbance regime and biome (e.g. crown-fire Mediterranean ecosystems) can guide research in other ecosystems but should not be extrapolated at the global scale.


Assuntos
Germinação , Internacionalidade , Secas , Modelos Biológicos , Plantas
8.
Plant Cell Environ ; 39(9): 2085-94, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27037757

RESUMO

Water plays a central role in plant biology and the efficiency of water transport throughout the plant affects both photosynthetic rate and growth, an influence that scales up deterministically to the productivity of terrestrial ecosystems. Moreover, hydraulic traits mediate the ways in which plants interact with their abiotic and biotic environment. At landscape to global scale, plant hydraulic traits are important in describing the function of ecological communities and ecosystems. Plant hydraulics is increasingly recognized as a central hub within a network by which plant biology is connected to palaeobiology, agronomy, climatology, forestry, community and ecosystem ecology and earth-system science. Such grand challenges as anticipating and mitigating the impacts of climate change, and improving the security and sustainability of our food supply rely on our fundamental knowledge of how water behaves in the cells, tissues, organs, bodies and diverse communities of plants. A workshop, 'Emerging Frontiers in Plant Hydraulics' supported by the National Science Foundation, was held in Washington DC, 2015 to promote open discussion of new ideas, controversies regarding measurements and analyses, and especially, the potential for expansion of up-scaled and down-scaled inter-disciplinary research, and the strengthening of connections between plant hydraulic research, allied fields and global modelling efforts.


Assuntos
Ecossistema , Árvores/fisiologia , Água/fisiologia , Ciclo Hidrológico
9.
Am J Bot ; 103(9): 1607-17, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27638918

RESUMO

PREMISE OF THE STUDY: California experienced severe drought between 2012 and 2016. During this period, we compared seasonal changes in tissue-water relations among eight fern species in the Santa Monica Mountains of southern California to elucidate differential mechanisms of drought survival and physiological performance during extreme water deficits. METHODS: We monitored seasonal changes in water potential (Ψmd) and dark-adapted chlorophyll fluorescence (Fv/Fm), assessed tissue-water relations including osmotic potential at saturation and the turgor loss point (Ψπ, sat and Ψπ, tlp), and measured, for two evergreen species, xylem-specific and leaf-specific hydraulic conductivity (Ks and Kl) and vulnerability of stem xylem to water stress-induced embolism (water potential at 50% loss hydraulic conductivity, Ψ50). KEY RESULTS: Species grew in either riparian or chaparral understory. The five chaparral species had a wider range of seasonal water potentials, root depths, and frond phenological traits, including one evergreen, two summer-deciduous, and two desiccation-tolerant (resurrection) species. Evergreen species were especially diverse, with an evergreen riparian species maintaining seasonal water potentials above -1.3 MPa, while an evergreen chaparral species had seasonal water potentials below -8 MPa. In those two species the Ψ50 values were -2.5 MPa and -4.3 MPa, respectively. CONCLUSIONS: Observed differences in physiological performance among eight fern species reflected niche partitioning in water utilization and habitat preference associated with distinct phenological traits. We predict differential survival among fern species as future drought events in California intensify, with desiccation-tolerant resurrection ferns being the most resistant.


Assuntos
Mudança Climática , Secas , Gleiquênias/metabolismo , California , Dessecação , Ecossistema , Estações do Ano , Especificidade da Espécie , Água/metabolismo
10.
J Appl Clin Med Phys ; 16(2): 4973, 2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103173

RESUMO

While commissioning Varian's Portal Dose Image Prediction (PDIP) algorithm for portal dosimetry, an asymmetric radial response in the portal imager due to backscatter from the support arm was observed. This asymmetric response led to differences on the order of 2%-3% for simple square fields (< 20 × 20 cm2) when comparing the measured to predicted portal fluences. A separate problem was that discrepancies of up to 10% were seen in measured to predicted portal fluences at increasing off-axis distance (> 10 cm). We have modified suggested methods from the literature to provide a 1D correction for the off-axis response problem which adjusts the diagonal profile used in the portal imager calibration. This inherently cannot fix the 2D problem since the PDIP algorithm assumes a radially symmetric response and will lead to some uncertainty in portal dosimetry results. Varian has recently released generic "2D correction" files with their Portal Dosimetry Pre-configuration (PDPC) package, but no independent testing has been published. We present the comparison between QA results using the Varian correction method to results using our 1D profile correction method using the gamma passing rates with a 3%, 3 mm criterion. The average, minimum, and maximum gamma pass rates for nine fixed-field IMRT fields at gantry 0° using our profile correction method were 98.1%, 93.7%, and 99.8%, respectively, while the results using the PDPC correction method were 98.4%, 93.1%, and 99.8%. For four RapidArc fields, the average, minimum, and maximum gamma pass rates using our correction method were 99.6%, 99.4%, and 99.9%, respectively, while the results using the PDPC correction method were 99.8%, 99.5%, and 99.9%. The average gamma pass rates for both correction methods are quite similar, but both show improvement over the uncorrected results.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/instrumentação , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia de Intensidade Modulada , Calibragem , Humanos , Dosagem Radioterapêutica
11.
Glob Chang Biol ; 20(3): 893-907, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24375846

RESUMO

We examined postfire regeneration of chaparral shrubs during an intense drought. This study focused on the demography and physiology of shrub species that resprout from a basal lignotuber following fire. We found significant levels of resprout mortality when intense drought occurred in the year following fire during the period of shrub recovery. Three of the seven sampled resprouting species had the greatest or near greatest levels of mortality ever recorded when compared to previous studies. Most shrub mortality occurred during the drought after individuals had resprouted (i.e. individuals survived fire, resprouted and then subsequently died). Physiological measurements of species with high mortality suggested that resprout stems were highly embolized and xylem hydraulic conductivities were close to zero during the peak of the drought. In addition, lignotubers of two of the three species experiencing high mortality were depleted of starch. Population densities of most shrub species declined after the drought compared with their prefire levels, with the exception of one drought tolerant obligate seeding species. Resprouting shrub species may deplete their carbohydrate reserves during the resprouting process, making them particularly vulnerable to drought because of the need to transpire water to acquire the CO2 that is used to supply energy to a large respiring root system. Drought appears to interact with fire by altering postfire shrub recovery and altering species abundances and composition of chaparral communities.


Assuntos
Secas , Incêndios , Fenômenos Fisiológicos Vegetais , California , Metabolismo dos Carboidratos , Estômatos de Plantas/metabolismo , Tubérculos/metabolismo , Água/metabolismo , Xilema/fisiologia
12.
J Appl Clin Med Phys ; 15(4): 4835, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25207412

RESUMO

Image-guided radiation therapy using cone-beam computed tomography (CBCT) is becoming routine practice in modern radiation therapy. The purpose of this work was to develop an imaging QA program for CT and CBCT units in our department, based on the American College of Radiology (ACR) CT accreditation phantom. The phantom has four testing modules, permitting one to test CT number accuracy, slice width, low contrast resolution, image uniformity, in-plane distance accuracy, and high-contrast resolution reproducibly with suggested window/levels for image analysis. Additional tests for contrast-to-noise ratio (CNR) and noise were added using the polyethylene and acrylic plugs. Baseline values were obtained from CT simulator images acquired on a Phillips Brilliance Big Bore CT simulator and CBCT images acquired on three Varian CBCTs for the imaging protocols most used clinically. Images were then acquired quarterly over a period of two years. Images were exported via DICOM and analyzed manually using OsiriX. Baseline values were used to ensure that image quality remained consistent quarterly, and baselines were reset at any major maintenance or recalibration. Analysis of CT simulator images showed that image quality was within ACR guidelines for all tested scanning protocols. All three CBCT systems were unable to distinguish the low-contrast resolution plugs and had the same high-contrast resolution over all imaging protocols. Analysis of CBCT results over time determined a range of values that could be used to establish quantitative tolerance levels for image quality deterioration. While appropriate for the helical CT, the ACR phantom and guidelines could be modified to be more useful in evaluating CBCT systems. In addition, the observed values for the CT simulator were well within ACR tolerances.


Assuntos
Acreditação , Tomografia Computadorizada de Feixe Cônico/normas , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia Guiada por Imagem/normas , Tomografia Computadorizada por Raios X/normas , Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos
13.
J Appl Clin Med Phys ; 14(6): 4239, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24257270

RESUMO

Remote afterloading devices used for high-dose-rate (HDR) brachytherapy may be supplied with different sources, and these sources typically have differing initial source strengths. In addition, the proposed frequency for source changes may also vary, depending upon the source type. Dosimetric parameters unique to each source are often used to compare source types. However, when considering the relative dosimetric efficiency between two HDR sources, the combined effect of source type, initial source strength, and source change scheme must be considered. A method of quantifying this combined effect by calculating mean dose rate from specific dosimetric source data is discussed. This method suggests an objective manner of comparing source scheme equivalency to facilitate performing a cost ratio analysis between different HDR sources and source change schemes.


Assuntos
Braquiterapia , Radioisótopos de Cobalto , Radioisótopos de Irídio , Neoplasias/radioterapia , Radiometria , Humanos , Método de Monte Carlo , Prognóstico , Dosagem Radioterapêutica
14.
Med Phys ; 39(3): 1424-34, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22380375

RESUMO

PURPOSE: Recent advances in the imaging of (90)Y using positron emission tomography (PET) and improved uncertainty in the branching ratio for the internal pair production component of (90)Y decay allow for a more accurate determination of the activity distribution of (90)Y microspheres within a patient. This improved activity distribution can be convolved with the dose kernel of (90)Y to calculate the dose distribution within a patient. This work investigates the effects of microsphere and surrounding material composition on (90)Y dose kernels using egsnrc and mcnp5 and compares the results of these two transport codes. METHODS: Monte Carlo simulations were performed with egsnrc and mcnp5 to calculate the dose rate at multiple radial distances around various (90)Y sources. Point source simulations were completed with mcnp5 to determine the optimal electron transport settings for this work. After determining the optimal settings, point source simulations were completed using egsnrc (user code edknrc) and mcnp5 in water and liver [as defined by the International Commission on Radiation Units and Measurements (ICRU) Report 44]. The results were compared to ICRU Report 72 reference data. Point source simulations were also completed in water with a density of 1.06 g[middle dot]cm(-3) to evaluate the effect of the density of the surrounding material. Glass and resin microsphere simulations were performed with average and maximum diameter and density values (based on values given in the literature) in water and in liver. The results were compared to point source simulation results using the same transport code and in the same surrounding material. All simulations had statistical uncertainties less than 1%. RESULTS: The optimal transport settings in mcnp5 for this work included using the energy-and step-specific algorithm (DBCN 17J 2) and ESTEP set to 10. These settings were used for all subsequent simulations with mcnp5. The point source simulations in water for both egsnrc and mcnp5 were found to agree within 2% of the ICRU 72 reference data over the investigated range. Point source simulations in liver had large differences relative to ICRU 72, approaching -60% near the maximum range of (90)Y. These differences are mostly attributed to the difference in density between water (1.0 g[middle dot]cm(-3)) and liver (1.06 g[middle dot]cm(-3)). Glass and resin microsphere simulations showed a slight decrease in the dose rate near the maximum range of (90)Y relative to the point source simulations. The largest relative differences were approximately -4.2% and -2.8% for the glass and resin microspheres, respectively. Agreement between the egsnrc and mcnp5 simulations results was generally good. CONCLUSIONS: The presence of the microsphere material causes slight differences in the (90)Y dose kernel compared to those calculated with point sources. Large differences were seen between simulations in water and those in liver. For the most accurate calculation of the dose distribution, the density of the patient's liver should be accounted for in the calculation of the dose kernel. Lastly, due to the need to determine the optimal transport settings with mcnp5, electron transport with this code should be used with caution.


Assuntos
Microesferas , Método de Monte Carlo , Tomografia por Emissão de Pósitrons , Radiometria , Radioisótopos de Ítrio/química
15.
Med Phys ; 39(10): 6208-36, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23039658

RESUMO

The charge of Task Group 186 (TG-186) is to provide guidance for early adopters of model-based dose calculation algorithms (MBDCAs) for brachytherapy (BT) dose calculations to ensure practice uniformity. Contrary to external beam radiotherapy, heterogeneity correction algorithms have only recently been made available to the BT community. Yet, BT dose calculation accuracy is highly dependent on scatter conditions and photoelectric effect cross-sections relative to water. In specific situations, differences between the current water-based BT dose calculation formalism (TG-43) and MBDCAs can lead to differences in calculated doses exceeding a factor of 10. MBDCAs raise three major issues that are not addressed by current guidance documents: (1) MBDCA calculated doses are sensitive to the dose specification medium, resulting in energy-dependent differences between dose calculated to water in a homogeneous water geometry (TG-43), dose calculated to the local medium in the heterogeneous medium, and the intermediate scenario of dose calculated to a small volume of water in the heterogeneous medium. (2) MBDCA doses are sensitive to voxel-by-voxel interaction cross sections. Neither conventional single-energy CT nor ICRU∕ICRP tissue composition compilations provide useful guidance for the task of assigning interaction cross sections to each voxel. (3) Since each patient-source-applicator combination is unique, having reference data for each possible combination to benchmark MBDCAs is an impractical strategy. Hence, a new commissioning process is required. TG-186 addresses in detail the above issues through the literature review and provides explicit recommendations based on the current state of knowledge. TG-43-based dose prescription and dose calculation remain in effect, with MBDCA dose reporting performed in parallel when available. In using MBDCAs, it is recommended that the radiation transport should be performed in the heterogeneous medium and, at minimum, the dose to the local medium be reported along with the TG-43 calculated doses. Assignments of voxel-by-voxel cross sections represent a particular challenge. Electron density information is readily extracted from CT imaging, but cannot be used to distinguish between different materials having the same density. Therefore, a recommendation is made to use a number of standardized materials to maintain uniformity across institutions. Sensitivity analysis shows that this recommendation offers increased accuracy over TG-43. MBDCA commissioning will share commonalities with current TG-43-based systems, but in addition there will be algorithm-specific tasks. Two levels of commissioning are recommended: reproducing TG-43 dose parameters and testing the advanced capabilities of MBDCAs. For validation of heterogeneity and scatter conditions, MBDCAs should mimic the 3D dose distributions from reference virtual geometries. Potential changes in BT dose prescriptions and MBDCA limitations are discussed. When data required for full MBDCA implementation are insufficient, interim recommendations are made and potential areas of research are identified. Application of TG-186 guidance should retain practice uniformity in transitioning from the TG-43 to the MBDCA approach.


Assuntos
Braquiterapia/métodos , Modelos Biológicos , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Relatório de Pesquisa , Algoritmos , Artefatos , Tomografia Computadorizada de Feixe Cônico , Humanos , Radioisótopos de Irídio/uso terapêutico , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Incerteza , Itérbio/uso terapêutico
16.
Am J Bot ; 99(9): 1464-76, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22917948

RESUMO

PREMISE OF THE STUDY: California chaparral shrub species have different life history types: Nonsprouters (NS) are killed by fire and persist through a fire-stimulated seed bank; facultative sprouters (FS) reestablish by a combination of vegetative sprouting and seeding; and obligate sprouters (OS) reestablish exclusively by sprouting. Nonsprouters and FS establish seedlings in open-canopy postfire environments, whereas OS establish seedlings between fires in the shady understory. We hypothesized that allocation differences among seedlings of postfire sprouters and nonsprouters and regeneration niche differences would lead to contrasting patterns in biomass accumulation (NS > FS > OS, in sun; OS > FS > NS, in shade). METHODS: Seedlings of three species from each life history type were grown in sun and 75% shade. We measured net carbon assimilation and biomass accumulation after one year. KEY RESULTS: Biomass accumulation was similar in the sun except FS>OS. In the shade, NS had lower biomass than FS and OS. Assimilation rates, nitrogen relations, and allocation differences could not fully explain biomass accumulation differences. Instead, biomass accumulation was inversely related to water-stress tolerance and shade tolerance. Additionally, OS and FS differed in root/shoot allocation even though both are sprouters. CONCLUSIONS: Seedling growth and carbon assimilation rates were divergent among three life history types and were consistent with differences in tolerance to water stress and shade or sun regeneration niches, but not tradeoffs in sprouting-related allocation differences per se.


Assuntos
Ecossistema , Rhamnaceae/crescimento & desenvolvimento , Rhamnaceae/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Análise de Variância , Biomassa , Gases/metabolismo , Nitrogênio/metabolismo , Fotossíntese/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Análise de Componente Principal , Rhamnaceae/efeitos da radiação , Plântula/efeitos da radiação , Luz Solar
17.
Med Phys ; 38(12): 6721-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22149854

RESUMO

PURPOSE: To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) (192)Ir brachytherapy sources maintained by the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date. METHODS: The improved, laser-aligned seven-distance apparatus of the University of Wisconsin Medical Radiation Research Center (UWMRRC) was used to perform air-kerma strength measurements of five different HDR (192)Ir source models. The results of these measurements were compared with those from well chambers traceable to the original standard. Alternative methodologies for interpolating the (192)Ir air-kerma calibration coefficient from the NIST air-kerma standards at (137)Cs and 250 kVp x rays (M250) were investigated and intercompared. As part of the interpolation method comparison, the Monte Carlo code EGSnrc was used to calculate updated values of A(wall) for the Exradin A3 chamber used for air-kerma strength measurements. The effects of air attenuation and scatter, room scatter, as well as the solution method were investigated in detail. RESULTS: The average measurements when using the inverse N(K) interpolation method for the Classic Nucletron, Nucletron microSelectron, VariSource VS2000, GammaMed Plus, and Flexisource were found to be 0.47%, -0.10%, -1.13%, -0.20%, and 0.89% different than the existing standard, respectively. A further investigation of the differences observed between the sources was performed using MCNP5 Monte Carlo simulations of each source model inside a full model of an HDR 1000 Plus well chamber. CONCLUSIONS: Although the differences between the source models were found to be statistically significant, the equally weighted average difference between the seven-distance measurements and the well chambers was 0.01%, confirming that it is not necessary to update the current standard maintained at the UWADCL.


Assuntos
Algoritmos , Radioisótopos de Irídio/análise , Radiometria/métodos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Med Phys ; 37(6): 2693-702, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20632580

RESUMO

PURPOSE: Intracavitary accelerated partial breast irradiation (APBI) has become a popular treatment for early stage breast cancer in recent years due to its shortened course of treatment and simplified treatment planning compared to traditional external beam breast conservation therapy. However, the exit dose to the skin is a major concern and can be a limiting factor for these treatments. Most treatment planning systems (TPSs) currently used for high dose-rate (HDR) 192Ir brachytherapy overestimate the exit skin dose because they assume a homogeneous water medium and do not account for finite patient dimensions. The purpose of this work was to quantify the TPS overestimation of the exit skin dose for a group of patients and several phantom configurations. METHODS: The TPS calculated skin dose for 59 HDR 192Ir APBI patients was compared to the skin dose measured with LiF:Mg,Ti thermoluminescent dosimeters (TLDs). Additionally, the TPS calculated dose was compared to the TLD measured dose and the Monte Carlo (MC) calculated dose for eight phantom configurations. Four of the phantom configurations simulated treatment conditions with no scattering material beyond the point of measurement and the other four configurations simulated the homogeneous scattering conditions assumed by the TPS. Since the calibration TLDs for this work were irradiated with 137Cs and the experimental irradiations were performed with 192Ir, experiments were performed to determine the intrinsic energy dependence of the TLDs. Correction factors that relate the dose at the point of measurement (center of TLD) to the dose at the point of interest (basal skin layer) were also determined and applied for each irradiation geometry. RESULTS: The TLD intrinsic energy dependence for 192Ir relative to 137Cs was 1.041 +/- 1.78%. The TPS overestimated the exit skin dose by an average of 16% for the group of 59 patients studied, and by 9%-15% for the four phantom setups simulating treatment conditions. For the four phantom setups simulating the conditions assumed by the TPS, the TPS calculated dose agreed well with the TLD and MC results (within 3% and 1%, respectively). The inverse square geometry correction factor ranged from 1.023 to 1.042, and an additional correction factor of 0.978 was applied to account for the lack of charged particle equilibrium in the TLD and basal skin layer. CONCLUSIONS: TPS calculations that assume a homogeneous water medium overestimate the exit skin dose for intracavitary APBI treatments. It is important to determine the actual skin dose received during intracavitary APBI to determine the skin dose-response relationship and establish dose limits for optimal skin sparing. This study has demonstrated that TLDs can measure the skin dose with an expanded uncertainty (k = 2) of 5.6% when the proper corrections are applied.


Assuntos
Carga Corporal (Radioterapia) , Braquiterapia/métodos , Neoplasias da Mama/radioterapia , Irídio/uso terapêutico , Radioisótopos/uso terapêutico , Pele , Dosimetria Termoluminescente/métodos , Algoritmos , Humanos , Radioterapia Assistida por Computador/métodos
19.
Nature ; 428(6985): 851-4, 2004 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15103376

RESUMO

Trees grow tall where resources are abundant, stresses are minor, and competition for light places a premium on height growth. The height to which trees can grow and the biophysical determinants of maximum height are poorly understood. Some models predict heights of up to 120 m in the absence of mechanical damage, but there are historical accounts of taller trees. Current hypotheses of height limitation focus on increasing water transport constraints in taller trees and the resulting reductions in leaf photosynthesis. We studied redwoods (Sequoia sempervirens), including the tallest known tree on Earth (112.7 m), in wet temperate forests of northern California. Our regression analyses of height gradients in leaf functional characteristics estimate a maximum tree height of 122-130 m barring mechanical damage, similar to the tallest recorded trees of the past. As trees grow taller, increasing leaf water stress due to gravity and path length resistance may ultimately limit leaf expansion and photosynthesis for further height growth, even with ample soil moisture.


Assuntos
Sequoia/anatomia & histologia , Sequoia/metabolismo , Árvores/anatomia & histologia , Árvores/metabolismo , Água/metabolismo , Transporte Biológico , Biomassa , Estatura , California , Dióxido de Carbono/metabolismo , Meio Ambiente , Gravitação , Luz , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Transpiração Vegetal , Sequoia/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento
20.
Front Microbiol ; 11: 590035, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391206

RESUMO

The persistence of college students in STEM majors after their first-year of college is approximately 50%, with underrepresented populations displaying even higher rates of departure. For many undergraduates, their first-year in college is defined by large class sizes, poor access to research faculty, and minimal standing in communities of scholars. Pepperdine University and Whittier College, funded by a National Science Foundation award to Improve Undergraduate Stem Education (NSF IUSE), partnered in the development of first-year classes specifically geared to improve student persistence in STEM and academic success. This Students as Scholars Program (SAS) engaged first-year undergraduates in scholarly efforts during their first semester in college with a careful approach to original research design and mentoring by both faculty and upperclassmen experienced in research. Courses began by introducing hypothesis formulation and experimental design partnered with the scientific focus of each course (ecological, biochemical, microbiological). Students split into research teams, explored the primary literature, designed research projects, and executed experiments over a 6-7 week period, collecting, analyzing, and interpreting data. Microbiology-specific projects included partnerships with local park managers to assess water quality and microbial coliform contamination at specified locations in a coastal watershed. In addition, students explored the impact of soil salinity on microbial community structure. Analysis of these samples included next-generation sequencing and microbiome compositional analysis via collaboration with students from an upper division microbiology course. This cross-course collaboration facilitated additional student mentoring opportunities between upperclassmen and first-year students. This approach provided first-year students an introduction to the analysis of complex data sets using bioinformatics and statistically reliable gas-exchange replicates. Assessment of the impact of this program revealed students to view the research as challenging, but confidence building as they take their first steps as biology majors. In addition, the direct mentorship of first-year students by upperclassmen and faculty was viewed positively by students. Ongoing assessments have revealed SAS participants to display a 15% increased persistence rate in STEM fields when compared to non-SAS biology majors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA