Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Surg Endosc ; 37(11): 8577-8593, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37833509

RESUMO

BACKGROUND: With Surgomics, we aim for personalized prediction of the patient's surgical outcome using machine-learning (ML) on multimodal intraoperative data to extract surgomic features as surgical process characteristics. As high-quality annotations by medical experts are crucial, but still a bottleneck, we prospectively investigate active learning (AL) to reduce annotation effort and present automatic recognition of surgomic features. METHODS: To establish a process for development of surgomic features, ten video-based features related to bleeding, as highly relevant intraoperative complication, were chosen. They comprise the amount of blood and smoke in the surgical field, six instruments, and two anatomic structures. Annotation of selected frames from robot-assisted minimally invasive esophagectomies was performed by at least three independent medical experts. To test whether AL reduces annotation effort, we performed a prospective annotation study comparing AL with equidistant sampling (EQS) for frame selection. Multiple Bayesian ResNet18 architectures were trained on a multicentric dataset, consisting of 22 videos from two centers. RESULTS: In total, 14,004 frames were tag annotated. A mean F1-score of 0.75 ± 0.16 was achieved for all features. The highest F1-score was achieved for the instruments (mean 0.80 ± 0.17). This result is also reflected in the inter-rater-agreement (1-rater-kappa > 0.82). Compared to EQS, AL showed better recognition results for the instruments with a significant difference in the McNemar test comparing correctness of predictions. Moreover, in contrast to EQS, AL selected more frames of the four less common instruments (1512 vs. 607 frames) and achieved higher F1-scores for common instruments while requiring less training frames. CONCLUSION: We presented ten surgomic features relevant for bleeding events in esophageal surgery automatically extracted from surgical video using ML. AL showed the potential to reduce annotation effort while keeping ML performance high for selected features. The source code and the trained models are published open source.


Assuntos
Esofagectomia , Robótica , Humanos , Teorema de Bayes , Esofagectomia/métodos , Aprendizado de Máquina , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Estudos Prospectivos
2.
Int J Comput Assist Radiol Surg ; 18(9): 1687-1695, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37193935

RESUMO

PURPOSE: Endovascular interventions require intense practice to develop sufficient dexterity in catheter handling within the human body. Therefore, we present a modular training platform, featuring 3D-printed vessel phantoms with patient-specific anatomy and integrated piezoresistive impact force sensing of instrument interaction at clinically relevant locations for feedback-based skill training to detect and reduce damage to the delicate vascular wall. METHODS: The platform was fabricated and then evaluated in a user study by medical ([Formula: see text]) and non-medical ([Formula: see text]) users. The users had to navigate a set of guidewire and catheter through a parkour of 3 modules including an aneurismatic abdominal aorta, while impact force and completion time were recorded. Eventually, a questionnaire was conducted. RESULTS: The platform allowed to perform more than 100 runs in which it proved capable to distinguish between users of different experience levels. Medical experts in the fields of vascular and visceral surgery had a strong performance assessment on the platform. It could be shown, that medical students could improve runtime and impact over 5 runs. The platform was well received and rated as promising for medical education despite the experience of higher friction compared to real human vessels. CONCLUSION: We investigated an authentic patient-specific training platform with integrated sensor-based feedback functionality for individual skill training in endovascular surgery. The presented method for phantom manufacturing is easily applicable to arbitrary patient-individual imaging data. Further work shall address the implementation of smaller vessel branches, as well as real-time feedback and camera imaging for further improved training experience.


Assuntos
Educação Médica , Procedimentos Endovasculares , Humanos , Cateterismo , Catéteres , Aorta Abdominal , Competência Clínica
3.
Med Image Anal ; 86: 102770, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889206

RESUMO

PURPOSE: Surgical workflow and skill analysis are key technologies for the next generation of cognitive surgical assistance systems. These systems could increase the safety of the operation through context-sensitive warnings and semi-autonomous robotic assistance or improve training of surgeons via data-driven feedback. In surgical workflow analysis up to 91% average precision has been reported for phase recognition on an open data single-center video dataset. In this work we investigated the generalizability of phase recognition algorithms in a multicenter setting including more difficult recognition tasks such as surgical action and surgical skill. METHODS: To achieve this goal, a dataset with 33 laparoscopic cholecystectomy videos from three surgical centers with a total operation time of 22 h was created. Labels included framewise annotation of seven surgical phases with 250 phase transitions, 5514 occurences of four surgical actions, 6980 occurences of 21 surgical instruments from seven instrument categories and 495 skill classifications in five skill dimensions. The dataset was used in the 2019 international Endoscopic Vision challenge, sub-challenge for surgical workflow and skill analysis. Here, 12 research teams trained and submitted their machine learning algorithms for recognition of phase, action, instrument and/or skill assessment. RESULTS: F1-scores were achieved for phase recognition between 23.9% and 67.7% (n = 9 teams), for instrument presence detection between 38.5% and 63.8% (n = 8 teams), but for action recognition only between 21.8% and 23.3% (n = 5 teams). The average absolute error for skill assessment was 0.78 (n = 1 team). CONCLUSION: Surgical workflow and skill analysis are promising technologies to support the surgical team, but there is still room for improvement, as shown by our comparison of machine learning algorithms. This novel HeiChole benchmark can be used for comparable evaluation and validation of future work. In future studies, it is of utmost importance to create more open, high-quality datasets in order to allow the development of artificial intelligence and cognitive robotics in surgery.


Assuntos
Inteligência Artificial , Benchmarking , Humanos , Fluxo de Trabalho , Algoritmos , Aprendizado de Máquina
4.
Sci Data ; 8(1): 101, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846356

RESUMO

Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on method robustness and generalization capabilities. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all video frames as well as information on instrument presence and corresponding instance-wise segmentation masks for surgical instruments (if any) in more than 10,000 individual frames. The data has successfully been used to organize international competitions within the Endoscopic Vision Challenges 2017 and 2019.


Assuntos
Colo Sigmoide/cirurgia , Proctocolectomia Restauradora/instrumentação , Reto/cirurgia , Sistemas de Navegação Cirúrgica , Ciência de Dados , Humanos , Laparoscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA