Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R25-R34, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38682243

RESUMO

Insulin insensitivity decreases exogenous glucose oxidation and metabolic clearance rate (MCR) during aerobic exercise in unacclimatized lowlanders at high altitude (HA). Whether use of an oral insulin sensitizer before acute HA exposure enhances exogenous glucose oxidation is unclear. This study investigated the impact of pioglitazone (PIO) on exogenous glucose oxidation and glucose turnover compared with placebo (PLA) during aerobic exercise at HA. With the use of a randomized crossover design, native lowlanders (n = 7 males, means ± SD, age: 23 ± 6 yr, body mass: 84 ± 11 kg) consumed 145 g (1.8 g/min) of glucose while performing 80 min of steady-state (1.43 ± 0.16 V̇o2 L/min) treadmill exercise at HA (460 mmHg; [Formula: see text] 96.6 mmHg) following short-term (5 days) use of PIO (15 mg oral dose per day) or PLA (microcrystalline cellulose pill). Substrate oxidation and glucose turnover were determined using indirect calorimetry and stable isotopes ([13C]glucose and 6,6-[2H2]glucose). Exogenous glucose oxidation was not different between PIO (0.31 ± 0.03 g/min) and PLA (0.32 ± 0.09 g/min). Total carbohydrate oxidation (PIO: 1.65 ± 0.22 g/min, PLA: 1.68 ± 0.32 g/min) or fat oxidation (PIO: 0.10 ± 0.0.08 g/min, PLA: 0.09 ± 0.07 g/min) was not different between treatments. There was no treatment effect on glucose rate of appearance (PIO: 2.46 ± 0.27, PLA: 2.43 ± 0.27 mg/kg/min), disappearance (PIO: 2.19 ± 0.17, PLA: 2.20 ± 0.22 mg/kg/min), or MCR (PIO: 1.63 ± 0.37, PLA: 1.73 ± 0.40 mL/kg/min). Results from this study indicate that PIO is not an effective intervention to enhance exogenous glucose oxidation or MCR during acute HA exposure. Lack of effect with PIO suggests that the etiology of glucose metabolism dysregulation during acute HA exposure may not result from insulin resistance in peripheral tissues.NEW & NOTEWORTHY Short-term (5 days) use of the oral insulin sensitizer pioglitazone does not alter circulating glucose or insulin responses to enhance exogenous glucose oxidation during steady-state aerobic exercise in young healthy men under simulated acute (8 h) high-altitude (460 mmHg) conditions. These results indicate that dysregulations in glucose metabolism in native lowlanders sojourning at high altitude may not be due to insulin resistance at peripheral tissue.


Assuntos
Altitude , Estudos Cross-Over , Exercício Físico , Glucose , Hipoglicemiantes , Oxirredução , Pioglitazona , Humanos , Pioglitazona/administração & dosagem , Pioglitazona/farmacologia , Masculino , Adulto Jovem , Exercício Físico/fisiologia , Adulto , Glucose/metabolismo , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Hipoglicemiantes/farmacocinética , Taxa de Depuração Metabólica , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Insulina/sangue , Insulina/metabolismo
2.
Cell Rep Med ; 5(1): 101363, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232698

RESUMO

Early time-restricted eating (eTRE) improves aspects of cardiometabolic health. Although the circadian system appears to regulate nutrient absorption, little is known about the effects of eTRE on intestinal absorption. In this randomized crossover trial, 16 healthy adults follow a controlled, weight maintenance diet for 9 days, consuming all calories between 0800 and 1400 (eTRE schedule) or 0800 and 2000 (control schedule). We measure the energy content of the diet, stool, and urine with bomb calorimetry and calculate intestinal energy absorption. The eTRE schedule is more effective than the control eating schedule for improving markers of cardiometabolic health, including 24-h mean glucose concentrations and glycemic variability, assessed as the mean amplitude of glycemic excursions. However, eTRE has no effect on intestinal energy and macronutrient absorption, gastrointestinal transit time, colonic hydrogen gas production, or stool microbial composition, suggesting eTRE does not impact gastrointestinal function. This trial is registered (ClinicalTrials.gov: NCT04877262).


Assuntos
Doenças Cardiovasculares , Dieta , Adulto , Humanos , Ingestão de Energia , Absorção Intestinal , Nutrientes
3.
Physiol Rep ; 11(23): e15885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38036455

RESUMO

Previous studies have demonstrated both energy restriction (ER) and higher protein (HP), lower carbohydrate (LC) diets downregulate hepatic de novo lipogenesis. Little is known about the independent and combined impact of ER and HP/LC diets on tissue-specific lipid kinetics in leptin receptor-deficient, obese rodents. This study investigated the effects of ER and dietary macronutrient content on body composition; hepatic, subcutaneous adipose tissue (SAT), and visceral AT (VAT) lipid metabolic flux (2 H2 O-labeling); and blood and liver measures of cardiometabolic health in six-week-old female obese Zucker rats (Leprfa+/fa+ ). Animals were randomized to a 10-week feeding intervention: ad libitum (AL)-HC/LP (76% carbohydrate/15% protein), AL-HP/LC (35% protein/56% carbohydrate), ER-HC/LP, or ER-HP/LC. ER groups consumed 60% of the feed consumed by AL. AL gained more fat mass than ER (P-energy = 0.012) and HP/LC gained more fat mass than HC/LP (P-diet = 0.025). Hepatic triglyceride (TG) concentrations (P-interaction = 0.0091) and absolute hepatic TG synthesis (P-interaction = 0.012) were lower in ER-HP/LC versus ER-HC/LP. ER had increased hepatic, SAT, and VAT de novo cholesterol fractional synthesis, absolute hepatic cholesterol synthesis, and serum cholesterol (P-energy≤0.0035). A HP/LC diet, independent of energy intake, led to greater gains in fat mass. A HP/LC diet, in the context of ER, led to reductions in absolute hepatic TG synthesis and TG content. However, ER worsened cholesterol metabolism. Increased adipose tissue TG retention with the HP/LC diet may reflect improved lipid storage capacity and be beneficial in this genetic model of obesity.


Assuntos
Carboidratos da Dieta , Lipogênese , Animais , Feminino , Ratos , Colesterol/metabolismo , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/farmacologia , Proteínas Alimentares/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Ratos Zucker , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA