Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 23: 1005-1015, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38420218

RESUMO

Corn stover is the most abundant form of crop residue that can serve as a source of lignocellulosic biomass in biorefinery approaches, for instance for the production of bioethanol. In such biorefinery processes, the constituent polysaccharide biopolymers are typically broken down into simple monomeric sugars by enzymatic saccharification, for further downstream fermentation into bioethanol. However, the recalcitrance of this material to enzymatic saccharification invokes the need for innovative pre-treatment methods to increase sugar conversion yield. Here, we focus on experimental glucose conversion time-courses for corn stover lignocellulose that has been pre-treated with different acid-catalysed processes and intensities. We identify the key parameters that determine enzymatic saccharification dynamics by performing a Sobol's sensitivity analysis on the comparison between the simulation results from our complex stochastic biophysical model, and the experimental data that we accurately reproduce. We find that the parameters relating to cellulose crystallinity and those associated with the cellobiohydrolase activity are predominantly driving the enzymatic saccharification dynamics. We confirm our computational results using mathematical calculations for a purely cellulosic substrate. On the one hand, having identified that only five parameters drastically influence the saccharification dynamics allows us to reduce the dimensionality of the parameter space (from nineteen to five parameters), which we expect will significantly speed up our fitting algorithm for comparison of experimental and simulated saccharification time-courses. On the other hand, these parameters directly highlight key targets for experimental endeavours in the optimisation of pre-treatment and saccharification conditions. Finally, this systematic and two-fold theoretical study, based on both mathematical and computational approaches, provides experimentalists with key insights that will support them in rationalising their complex experimental results.

2.
Comput Struct Biotechnol J ; 21: 5463-5475, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022701

RESUMO

Enzymatic digestion of lignocellulosic plant biomass is a key step in bio-refinery approaches for the production of biofuels and other valuable chemicals. However, the recalcitrance of this material in conjunction with its variability and heterogeneity strongly hampers the economic viability and profitability of biofuel production. To complement both academic and industrial experimental research in the field, we designed an advanced web application that encapsulates our in-house developed complex biophysical model of enzymatic plant cell wall degradation. PREDIG (https://predig.cs.hhu.de/) is a user-friendly, free, and fully open-source web application that allows the user to perform in silico experiments. Specifically, it uses a Gillespie algorithm to run stochastic simulations of the enzymatic saccharification of a lignocellulose microfibril, at the mesoscale, in three dimensions. Such simulations can for instance be used to test the action of distinct enzyme cocktails on the substrate. Additionally, PREDIG can fit the model parameters to uploaded experimental time-course data, thereby returning values that are intrinsically difficult to measure experimentally. This gives the user the possibility to learn which factors quantitatively explain the recalcitrance to saccharification of their specific biomass material.

3.
Phys Rev E ; 100(1-1): 012409, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31499904

RESUMO

Stick-slip motion, a common phenomenon observed during crawling of cells, is found to be strongly sensitive to the substrate stiffness. Stick-slip behaviors have previously been investigated typically using purely elastic substrates. For a more realistic understanding of this phenomenon, we propose a theoretical model to study the dynamics on a viscoelastic substrate. Our model, based on a reaction-diffusion framework, incorporates known important interactions such as retrograde flow of actin, myosin contractility, force-dependent assembly, and disassembly of focal adhesions coupled with cell-substrate interaction. We show that consideration of a viscoelastic substrate not only captures the usually observed stick-slip jumps but also predicts the existence of an optimal substrate viscosity corresponding to maximum traction force and minimum retrograde flow which was hitherto unexplored. Moreover, our theory predicts the time evolution of individual bond force that characterizes the stick-slip patterns on soft versus stiff substrates. Our analysis also elucidates how the duration of the stick-slip cycles are affected by various cellular parameters.


Assuntos
Movimento Celular , Elasticidade , Modelos Biológicos , Difusão , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA