Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 294(45): 16650-16662, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31537645

RESUMO

Calcium (Ca2+) signaling within the cell nucleus regulates specific cellular events such as gene transcription and cell proliferation. Nuclear and cytosolic Ca2+ levels can be independently regulated, and nuclear translocation of receptor tyrosine kinases (RTKs) is one way to locally activate signaling cascades within the nucleus. Nuclear RTKs, including the epidermal growth factor receptor (EGFR), are important for processes such as transcriptional regulation, DNA-damage repair, and cancer therapy resistance. RTKs can hydrolyze phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) within the nucleus, leading to Ca2+ release from the nucleoplasmic reticulum by inositol 1,4,5-trisphosphate receptors. PI(4,5)P2 hydrolysis is mediated by phospholipase C (PLC). However, it is unknown which nuclear PLC isoform is triggered by EGFR. Here, using subcellular fractionation, immunoblotting and fluorescence, siRNA-based gene knockdowns, and FRET-based biosensor reporter assays, we investigated the role of PLCδ4 in epidermal growth factor (EGF)-induced nuclear Ca2+ signaling and downstream events. We found that EGF-induced Ca2+ signals are inhibited when translocation of EGFR is impaired. Nuclear Ca2+ signals also were reduced by selectively buffering inositol 1,4,5-trisphosphate (InsP3) within the nucleus. EGF induced hydrolysis of nuclear PI(4,5)P2 by the intranuclear PLCδ4, rather than by PLCγ1. Moreover, protein kinase C, a downstream target of EGF, was active in the nucleus of stimulated cells. Furthermore, PLCδ4 and InsP3 modulated cell cycle progression by regulating the expression of cyclins A and B1. These results provide evidence that EGF-induced nuclear signaling is mediated by nuclear PLCδ4 and suggest new therapeutic targets to modulate the proliferative effects of this growth factor.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Núcleo Celular/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fosfolipase C delta/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/genética , Cadeias Pesadas de Clatrina/metabolismo , Ciclina A/metabolismo , Ciclina B1/metabolismo , Receptores ErbB/metabolismo , Humanos , Hidrólise , Inositol 1,4,5-Trifosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C delta/antagonistas & inibidores , Fosfolipase C delta/genética , Fosfolipase C gama/antagonistas & inibidores , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Proteína Quinase C/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
2.
Biochem Biophys Res Commun ; 412(2): 341-6, 2011 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-21821003

RESUMO

The epidermal growth factor (EGF) transduces its actions via the EGF receptor (EGFR), which can traffic from the plasma membrane to either the cytoplasm or the nucleus. However, the mechanism by which EGFR reaches the nucleus is unclear. To investigate these questions, liver cells were analyzed by immunoblot of cell fractions, confocal immunofluorescence and real time confocal imaging. Cell fractionation studies showed that EGFR was detectable in the nucleus after EGF stimulation with a peak in nuclear receptor after 10 min. Movement of EGFR to the nucleus was confirmed by confocal immunofluorescence and labeled EGF moved with the receptor to the nucleus. Small interference RNA (siRNA) was used to knockdown clathrin in order to assess the first endocytic steps of EGFR nuclear translocation in liver cells. A mutant dynamin (dynamin K44A) was also used to determine the pathways for this traffic. Movement of labeled EGF or EGFR to the nucleus depended upon dynamin and clathrin. This identifies the pathway that mediates the first steps for EGFR nuclear translocation in liver cells.


Assuntos
Núcleo Celular/enzimologia , Clatrina/metabolismo , Dinaminas/metabolismo , Receptores ErbB/metabolismo , Fígado/enzimologia , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular Tumoral , Células Cultivadas , Clatrina/genética , Dinaminas/genética , Fator de Crescimento Epidérmico/metabolismo , Hepatócitos/enzimologia , Humanos , Mutação , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos
3.
J Cancer Sci Ther ; 5(2): 58-65, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24738023

RESUMO

Cancer is comprised of a multitude of epigenetic abnormalities, including the global loss and regional gain of DNA methylation as well as alterations in histone methylation. Here, we characterize a new methyltransferase, SET domain-containing protein 4 (SETD4), which is involved in breast carcinogenesis. Quantitative real-time PCR (qPCR) showed elevated expression levels of SETD4 in several breast cancer cell lines. SETD4 overexpression was confirmed by western blot analysis suggesting a correlation between high expression of SETD4 and a lack of the estrogen receptor (ER) in breast cancer. In addition, cell fractionation studies and confocal immunofluorescence revealed the nuclear and non-nuclear localization of this new protein. SETD4 knockdown in breast cancer cell lines significantly suppressed their proliferation and delayed the G1/S cell cycle transition without affecting apoptosis. Furthermore, western blot analysis showed that knockdown of SETD4 decreased cyclin D1 expression, revealing the involvement of SETD4 in cell cycle regulation. These data imply that SETD4 plays a crucial role in breast carcinogenesis and could be a novel molecular target for the development of new strategies for the diagnosis and treatment of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA