Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutr Cancer ; 74(2): 650-659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33715540

RESUMO

Obesity is associated with low-grade chronic inflammation, and metabolic dysregulation. Evidence shows that chronic inflammation inhibits protective immunity mediated by CD4+ T cells. Additionally, obesity-induced inflammation affects prostate cancer progression. However, the effect of obesity on CD4+ T-cell- response to prostate cancer is not well understood. To investigate whether obesity induces changes in CD4+ T cell cytokine profile, cytokine expression was measured in splenic CD4+ T-cells from 10-week-old male C57Bl/6 mice exposed to conditioned media (CM) from macrophages grown in sera from obese subjects. Additionally, expression levels of key regulators of Epithelial-Mesenchymal Transition (EMT) were measure in prostate cancer epithelial cells exposed to conditioned media from obesity-modified T-cells. Cell migration and invasion was measured in prostate cancer epithelial cells exposed to CM from obesity-modified CD4+ T-cells. Obesity suppressed the expression of IFNγ and IL-2 in CD4+ T-cells but up-regulated the expression of IL-6. Prostate epithelial cancer cells exposed to conditioned media from obesity-modified T cell increased the expression of EMT markers and showed a higher invasive and migratory capacity.


Assuntos
Próstata , Neoplasias da Próstata , Animais , Linfócitos T CD4-Positivos , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/genética , Humanos , Masculino , Camundongos , Obesidade/complicações , Fenótipo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo
2.
Biochim Biophys Acta ; 1842(10): 1475-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25066474

RESUMO

Glycerol-3-phosphate acyltransferase-1 is the first rate limiting step in de novo glycerophospholipid synthesis. We have previously demonstrated that GPAT-1 deletion can significantly alter T cell function resulting in a T cell phenotype similar to that seen in aging. Recent studies have suggested that changes in the metabolic profile of T cells are responsible for defining specific effector functions and T cell subsets. Therefore, we determined whether T cell dysfunction in GPAT-1 (-/-) CD4(+) T cells could be explained by changes in cellular metabolism. We show here for the first time that GPAT-1 (-/-) CD4(+) T cells exhibit several key metabolic defects. Striking decreases in both the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were observed in GPAT-1 (-/-) CD4(+) T cells following CD3/CD28 stimulation indicating an inherent cellular defect in energy production. In addition, the spare respiratory capacity (SRC) of GPAT-1 (-/-) CD4+ T cells, a key indicator of their ability to cope with mitochondrial stress was significantly decreased. We also observed a significant reduction in mitochondrial membrane potential in GPAT-1 (-/-) CD4(+) T cells compared to their WT counterparts, indicating that GPAT-1 deficiency results in altered or dysfunctional mitochondria. These data demonstrate that deletion of GPAT-1 can dramatically alter total cellular metabolism under conditions of increased energy demand. Furthermore, altered metabolic response following stimulation may be the defining mechanism underlying T cell dysfunction in GPAT-1 (-/-) CD4(+) T cells. Taken together, these results indicate that GPAT-1 is essential for the response to the increased metabolic demands associated with T cell activation.

3.
Prostate ; 75(5): 449-62, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25560177

RESUMO

BACKGROUND: A close relationship between aging, inflammation, and prostate cancer is widely accepted. Aging is accompanied by a progressive increase in pro-inflammatory cytokines, including interleukin 17 (IL-17), a key pro-inflammatory cytokine that becomes dysregulated with age. However, the contribution of IL-17 to age-related prostate tumorigenesis remains unclear. The aim of this study was to investigate the role of age-related IL-17 dysregulation in prostate tumorigenesis. METHODS: Serum and splenic T-lymphocytes from young GPAT-1 knock-out aging-mimic T cell mice as well as young and aged wild-type mice were collected. shRNA was used to knock down the IL-17 receptor in LNCaP prostate cancer cells and RWPE-1 non-transformed prostate epithelial cells, which were then exposed to the mouse sera or conditioned media from stimulated T-lymphocytes. NF-κB activation, NF-κB target gene expression, and cell proliferation were all measured in these cells by luciferase assay, qPCR, Western blot analysis, and MTT assay, respectively. RESULTS: T-lymphocyte-secreted IL-17 from aging-mimic mice induced NF-κB activity and target gene expression in LNCaP and RWPE-1 cells. It also promoted proliferation of these cells. CONCLUSION: Aging-mimic T cell mice produce increased levels of IL-17, which stimulates the pro-inflammatory NF-κB pathway in prostate epithelial cells. NF-κB increases inflammation, carcinogenesis and metastatic potential in the prostate. These findings provide evidence that the dysregulation of cytokine production seen in aged T cells may directly contribute to the increased risk for prostate cancer in the elderly.


Assuntos
Envelhecimento/fisiologia , Interleucina-17/metabolismo , Neoplasias da Próstata/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/patologia , Células Epiteliais/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Receptores de Interleucina-17/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia
4.
Prostate ; 73(8): 855-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23532664

RESUMO

BACKGROUND: The primary risk for prostate cancer is aging, often associated with inflammation. Evidence implicates progressive age-related immune dysfunction with increased prostate cancer incidence and mortality. The aged T-cell response is characterized by increased production of pro-inflammatory cytokines, which could significantly contribute to prostate tumorigenesis through induction of key inflammation-mediated pro-survival factors. METHODS: T-cell function of the young (<6 month-old) glycerol-3-phosphate acyltransferase-1 (GPAT-1) knock-out mouse mimics many of the hallmarks observed in an aged (>22-month-old) mouse. Serum and splenic T-lymphocytes from young GPAT-1(-/-) (6 months) and aged wild type (22 months) mice were collected for in vitro studies, including a cytokine immunoarray for serum cytokine levels, luciferase assays for NF-κB activation and Western blot analyses for protein expression. RESULTS: The T-cell cytokine profile of the GPAT-1(-/-) mice mirrored that observed in aged wild type mice, including higher expression levels of IL-17. Serum- and T-cell-derived factors induced NF-κB activity in normal, non-transformed and prostate cancer epithelial cells, correlating with re-localization of NF-κB and increased protein expression of downstream targets of NF-κB. CONCLUSION: The aging and aging-mimic mice produced circulating factors that induce pro-inflammatory pathways in prostate cells, most notably NF-κB. These findings provide evidence that an aged T-cell may directly contribute to the increased risk for prostate cancer in the elderly and establish that the GPAT-1(-/-) model, which mimics many of the characteristics of an aged immune system, is a viable tool for investigating this novel area of cancer risk.


Assuntos
Envelhecimento/imunologia , Transformação Celular Neoplásica/imunologia , Glicerol-3-Fosfato O-Aciltransferase/imunologia , Inflamação/imunologia , Neoplasias da Próstata/imunologia , Linfócitos T/imunologia , Animais , Western Blotting , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Imunoensaio , Inflamação/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , Neoplasias da Próstata/enzimologia , Linfócitos T/enzimologia
5.
Front Aging ; 2: 803482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35822007

RESUMO

Objective: Although PU.1/Spi1 is known as a master regulator for macrophage development and function, we have reported previously that it is also expressed in adipocytes and is transcriptionally induced in obesity. Here, we investigated the role of adipocyte PU.1 in the development of the age-associated metabolic syndrome. Methods: We generated mice with adipocyte-specific PU.1 knockout, assessed metabolic changes in young and older adult PU.1fl/fl (control) and AdipoqCre PU.1fl/fl (aPU.1KO) mice, including body weight, body composition, energy expenditure, and glucose homeostasis. We also performed transcriptional analyses using RNA-Sequencing of adipocytes from these mice. Results: aPU.1KO mice have elevated energy expenditure at a young age and decreased adiposity and increased insulin sensitivity in later life. Corroborating these observations, transcriptional network analysis indicated the existence of validated, adipocyte PU.1-modulated regulatory hubs that direct inflammatory and thermogenic gene expression programs. Conclusion: Our data provide evidence for a previously uncharacterized role of PU.1 in the development of age-associated obesity and insulin resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA