Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(7): 1780-1795.e19, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30392958

RESUMO

Activated T cells differentiate into functional subsets with distinct metabolic programs. Glutaminase (GLS) converts glutamine to glutamate to support the tricarboxylic acid cycle and redox and epigenetic reactions. Here, we identify a key role for GLS in T cell activation and specification. Though GLS deficiency diminished initial T cell activation and proliferation and impaired differentiation of Th17 cells, loss of GLS also increased Tbet to promote differentiation and effector function of CD4 Th1 and CD8 CTL cells. This was associated with altered chromatin accessibility and gene expression, including decreased PIK3IP1 in Th1 cells that sensitized to IL-2-mediated mTORC1 signaling. In vivo, GLS null T cells failed to drive Th17-inflammatory diseases, and Th1 cells had initially elevated function but exhausted over time. Transient GLS inhibition, however, led to increased Th1 and CTL T cell numbers. Glutamine metabolism thus has distinct roles to promote Th17 but constrain Th1 and CTL effector cell differentiation.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Glutaminase/imunologia , Ativação Linfocitária , Células Th1/imunologia , Células Th17/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/genética , Glutaminase/genética , Masculino , Camundongos , Camundongos Transgênicos , Células Th1/citologia , Células Th17/citologia
2.
Nat Immunol ; 17(12): 1459-1466, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27695003

RESUMO

CD4+ effector T cells (Teff cells) and regulatory T cells (Treg cells) undergo metabolic reprogramming to support proliferation and immunological function. Although signaling via the lipid kinase PI(3)K (phosphatidylinositol-3-OH kinase), the serine-threonine kinase Akt and the metabolic checkpoint kinase complex mTORC1 induces both expression of the glucose transporter Glut1 and aerobic glycolysis for Teff cell proliferation and inflammatory function, the mechanisms that regulate Treg cell metabolism and function remain unclear. We found that Toll-like receptor (TLR) signals that promote Treg cell proliferation increased PI(3)K-Akt-mTORC1 signaling, glycolysis and expression of Glut1. However, TLR-induced mTORC1 signaling also impaired Treg cell suppressive capacity. Conversely, the transcription factor Foxp3 opposed PI(3)K-Akt-mTORC1 signaling to diminish glycolysis and anabolic metabolism while increasing oxidative and catabolic metabolism. Notably, Glut1 expression was sufficient to increase the number of Treg cells, but it reduced their suppressive capacity and Foxp3 expression. Thus, inflammatory signals and Foxp3 balance mTORC1 signaling and glucose metabolism to control the proliferation and suppressive function of Treg cells.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Receptores Toll-Like/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Transportador de Glucose Tipo 1/genética , Glicólise , Tolerância Imunológica , Alvo Mecanístico do Complexo 1 de Rapamicina , Metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Complexos Multiproteicos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
3.
Hum Mol Genet ; 23(9): 2440-6, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24334767

RESUMO

Malignant pheochromocytoma (PCC) and paraganglioma (PGL) are mostly caused by germline mutations of SDHB, encoding a subunit of succinate dehydrogenase. Using whole-exome sequencing, we recently identified a mutation in the FH gene encoding fumarate hydratase, in a PCC with an 'SDH-like' molecular phenotype. Here, we investigated the role of FH in PCC/PGL predisposition, by screening for germline FH mutations in a large international cohort of patients. We screened 598 patients with PCC/PGL without mutations in known PCC/PGL susceptibility genes. We searched for FH germline mutations and large deletions, by direct sequencing and multiplex ligation-dependent probe amplification methods. Global alterations in DNA methylation and protein succination were assessed by immunohistochemical staining for 5-hydroxymethylcytosine (5-hmC) and S-(2-succinyl) cysteine (2SC), respectively. We identified five pathogenic germline FH mutations (four missense and one splice mutation) in five patients. Somatic inactivation of the second allele, resulting in a loss of fumarate hydratase activity, was demonstrated in tumors with FH mutations. Low tumor levels of 5-hmC, resembling those in SDHB-deficient tumors, and positive 2SC staining were detected in tumors with FH mutations. Clinically, metastatic phenotype (P = 0.007) and multiple tumors (P = 0.02) were significantly more frequent in patients with FH mutations than those without such mutations. This study reveals a new role for FH in susceptibility to malignant and/or multiple PCC/PGL. Remarkably, FH-deficient PCC/PGLs display the same pattern of epigenetic deregulation as SDHB-mutated malignant PCC/PGL. Therefore, we propose that mutation screening for FH should be included in PCC/PGL genetic testing, at least for tumors with malignant behavior.


Assuntos
Fumarato Hidratase/genética , Mutação em Linhagem Germinativa/genética , Paraganglioma/genética , Feocromocitoma/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Éxons/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Hum Mol Genet ; 22(11): 2169-76, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23418310

RESUMO

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are chromaffin-cell tumors that arise from the adrenal medulla and extra-adrenal paraganglia, respectively. The dysfunction of genes involved in the cellular response to hypoxia, such as VHL, EGL nine homolog 1, and the succinate dehydrogenase (SDH) genes, leads to a direct abrogation of hypoxia inducible factor (HIF) degradation, resulting in a pseudo-hypoxic state implicated in PCC/PGL development. Recently, somatic post-zygotic mutations in EPAS1 (HIF2A) have been found in patients with multiple PGLs and congenital erythrocytosis. We assessed 41 PCCs/PGLs for mutations in EPAS1 and herein describe the clinical, molecular and genetic characteristics of the 7 patients found to carry somatic EPAS1 mutations; 4 presented with multiple PGLs (3 of them also had congenital erythrocytosis), whereas 3 were single sporadic PCC/PGL cases. Gene expression analysis of EPAS1-mutated tumors revealed similar mRNA EPAS1 levels to those found in SDH-gene- and VHL-mutated cases and a significant up-regulation of two hypoxia-induced genes (PCSK6 and GNA14). Interestingly, single nucleotide polymorphism array analysis revealed an exclusive gain of chromosome 2p in three EPAS1-mutated tumors. Furthermore, multiplex-PCR screening for small rearrangements detected a specific EPAS1 gain in another EPAS1-mutated tumor and in three non-EPAS1-mutated cases. The finding that EPAS1 is involved in the sporadic presentation of the disease not only increases the percentage of PCCs/PGLs with known driver mutations, but also highlights the relevance of studying other hypoxia-related genes in apparently sporadic tumors. Finally, the detection of a specific copy number alteration affecting chromosome 2p in EPAS1-mutated tumors may guide the genetic diagnosis of patients with this disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Mutação , Paraganglioma Extrassuprarrenal/complicações , Paraganglioma Extrassuprarrenal/genética , Feocromocitoma/genética , Policitemia/complicações , Policitemia/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Aberrações Cromossômicas , Cromossomos Humanos Par 2 , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia/genética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas/genética , Adulto Jovem
5.
Mod Pathol ; 28(6): 748-57, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25720323

RESUMO

MicroRNA deregulation could be a crucial event in thyroid carcinogenesis. However, current knowledge is based on studies that have used inherently biased methods. Thus, we aimed to define in an unbiased way a list of deregulated microRNAs in well-differentiated thyroid cancer in order to identify diagnostic and prognostic markers. We performed a microRNA deep-sequencing study using the largest well-differentiated thyroid tumor collection reported to date, comprising 127 molecularly characterized tumors with follicular or papillary patterns of growth and available clinical follow-up data, and 17 normal tissue samples. Furthermore, we integrated microRNA and gene expression data for the same tumors to propose targets for the novel molecules identified. Two main microRNA expression profiles were identified: one common for follicular-pattern tumors, and a second for papillary tumors. Follicular tumors showed a notable overexpression of several members of miR-515 family, and downregulation of the novel microRNA miR-1247. Among papillary tumors, top upregulated microRNAs were miR-146b and the miR-221~222 cluster, while miR-1179 was downregulated. BRAF-positive samples displayed extreme downregulation of miR-7 and -204. The identification of the predicted targets for the novel molecules gave insights into the proliferative potential of the transformed follicular cell. Finally, by integrating clinical follow-up information with microRNA expression, we propose a prediction model for disease relapse based on expression of two miRNAs (miR-192 and let-7a) and several other clinicopathological features. This comprehensive study complements the existing knowledge about deregulated microRNAs in the development of well-differentiated thyroid cancer and identifies novel markers associated with recurrence-free survival.


Assuntos
Adenocarcinoma Folicular/genética , Carcinoma/genética , MicroRNAs/genética , Neoplasias da Glândula Tireoide/genética , Adenocarcinoma Folicular/mortalidade , Adolescente , Adulto , Idoso , Carcinoma/mortalidade , Carcinoma Papilar , Análise por Conglomerados , Intervalo Livre de Doença , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide/mortalidade , Transcriptoma , Adulto Jovem
6.
Int J Cancer ; 135(9): 2054-64, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24676840

RESUMO

Pheochromocytomas and paragangliomas (PPGLs) are catecholamine-producing chromaffin cell tumors with diverse phenotypic features reflecting mutations in numerous genes, including MYC-associated factor X (MAX). To explore whether phenotypic differences among PPGLs reflect a MAX-mediated mechanism and opposing influences of hypoxia-inducible factor (HIF)s HIF2α and HIF1α, we combined observational investigations in PPGLs and gene-manipulation studies in two pheochromocytoma cell lines. Among PPGLs from 140 patients, tumors due to MAX mutations were characterized by gene expression profiles and intermediate phenotypic features that distinguished these tumors from other PPGLs, all of which fell into two expression clusters: one cluster with low expression of HIF2α and mature phenotypic features and the other with high expression of HIF2α and immature phenotypic features due to mutations stabilizing HIFs. Max-mutated tumors distributed to a distinct subcluster of the former group. In cell lines lacking Max, re-expression of the gene resulted in maturation of phenotypic features and decreased cell cycle progression. In cell lines lacking Hif2α, overexpression of the gene led to immature phenotypic features, failure of dexamethasone to induce differentiation and increased proliferation. HIF1α had opposing actions to HIF2α in both cell lines, supporting evolving evidence of their differential actions on tumorigenic processes via a MYC/MAX-related pathway. Requirement of a fully functional MYC/MAX complex to facilitate differentiation explains the intermediate phenotypic features in tumors due to MAX mutations. Overexpression of HIF2α in chromaffin cell tumors due to mutations affecting HIF stabilization explains their proliferative features and why the tumors fail to differentiate even when exposed locally to adrenal steroids.


Assuntos
Neoplasias das Glândulas Suprarrenais/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Células Cromafins/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Paraganglioma/patologia , Feocromocitoma/patologia , Neoplasias das Glândulas Suprarrenais/genética , Neoplasias das Glândulas Suprarrenais/metabolismo , Animais , Apoptose , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/genética , Western Blotting , Ciclo Celular , Diferenciação Celular , Células Cromafins/metabolismo , Perfilação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mutação/genética , Paraganglioma/genética , Paraganglioma/metabolismo , Feocromocitoma/genética , Feocromocitoma/metabolismo , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
7.
Int J Cancer ; 135(3): 598-610, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24382797

RESUMO

Thyroid cancer is a heterogeneous disease with several subtypes characterized by cytological, histological and genetic alterations, but the involvement of epigenetics is not well understood. Here, we investigated the role of aberrant DNA methylation in the development of well-differentiated thyroid tumors. We performed genome-wide DNA methylation profiling in the largest well-differentiated thyroid tumor series reported to date, comprising 83 primary tumors as well as 8 samples of adjacent normal tissue. The epigenetic profiles were closely related to not only tumor histology but also the underlying driver mutation; we found that follicular tumors had higher levels of methylation, which seemed to accumulate in a progressive manner along the tumorigenic process from adenomas to carcinomas. Furthermore, tumors harboring a BRAF or RAS mutation had a larger number of hypo- or hypermethylation events, respectively. The aberrant methylation of several candidate genes potentially related to thyroid carcinogenesis was validated in an independent series of 52 samples. Furthermore, through the integration of methylation and transcriptional expression data, we identified genes whose expression is associated with the methylation status of their promoters. Finally, by integrating clinical follow-up information with methylation levels we propose etoposide-induced 2.4 and Wilms tumor 1 as novel prognostic markers related to recurrence-free survival. This comprehensive study provides insights into the role of DNA methylation in well-differentiated thyroid cancer development and identifies novel markers associated with recurrence-free survival.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Papilar/genética , Impressões Digitais de DNA , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia/genética , Neoplasias da Glândula Tireoide/genética , Adenoma/genética , Adenoma/mortalidade , Adenoma/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Papilar/mortalidade , Carcinoma Papilar/patologia , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Prognóstico , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas B-raf/genética , Taxa de Sobrevida , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/mortalidade , Neoplasias da Glândula Tireoide/patologia , Proteínas WT1/genética , Adulto Jovem , Proteínas ras/genética
8.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617240

RESUMO

Regulatory T cells (Tregs) are promising cellular therapies to induce immune tolerance in organ transplantation and autoimmune disease. The success of chimeric antigen receptor (CAR) T-cell therapy for cancer has sparked interest in using CARs to generate antigen-specific Tregs. Here, we compared CAR with endogenous T cell receptor (TCR)/CD28 activation in human Tregs. Strikingly, CAR Tregs displayed increased cytotoxicity and diminished suppression of antigen-presenting cells and effector T (Teff) cells compared with TCR/CD28 activated Tregs. RNA sequencing revealed that CAR Tregs activate Teff cell gene programs. Indeed, CAR Tregs secreted high levels of inflammatory cytokines, with a subset of FOXP3+ CAR Tregs uniquely acquiring CD40L surface expression and producing IFNγ. Interestingly, decreasing CAR antigen affinity reduced Teff cell gene expression and inflammatory cytokine production by CAR Tregs. Our findings showcase the impact of engineered receptor activation on Treg biology and support tailoring CAR constructs to Tregs for maximal therapeutic efficacy.

9.
Cancer Res Commun ; 4(5): 1328-1343, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38687198

RESUMO

Chronic lymphocytic leukemia (CLL) cell survival and growth is fueled by the induction of B-cell receptor (BCR) signaling within the tumor microenvironment (TME) driving activation of NFκB signaling and the unfolded protein response (UPR). Malignant cells have higher basal levels of UPR posing a unique therapeutic window to combat CLL cell growth using pharmacologic agents that induce accumulation of misfolded proteins. Frontline CLL therapeutics that directly target BCR signaling such as Bruton tyrosine kinase (BTK) inhibitors (e.g., ibrutinib) have enhanced patient survival. However, resistance mechanisms wherein tumor cells bypass BTK inhibition through acquired BTK mutations, and/or activation of alternative survival mechanisms have rendered ibrutinib ineffective, imposing the need for novel therapeutics. We evaluated SpiD3, a novel spirocyclic dimer, in CLL cell lines, patient-derived CLL samples, ibrutinib-resistant CLL cells, and in the Eµ-TCL1 mouse model. Our integrated multi-omics and functional analyses revealed BCR signaling, NFκB signaling, and endoplasmic reticulum stress among the top pathways modulated by SpiD3. This was accompanied by marked upregulation of the UPR and inhibition of global protein synthesis in CLL cell lines and patient-derived CLL cells. In ibrutinib-resistant CLL cells, SpiD3 retained its antileukemic effects, mirrored in reduced activation of key proliferative pathways (e.g., PRAS, ERK, MYC). Translationally, we observed reduced tumor burden in SpiD3-treated Eµ-TCL1 mice. Our findings reveal that SpiD3 exploits critical vulnerabilities in CLL cells including NFκB signaling and the UPR, culminating in profound antitumor properties independent of TME stimuli. SIGNIFICANCE: SpiD3 demonstrates cytotoxicity in CLL partially through inhibition of NFκB signaling independent of tumor-supportive stimuli. By inducing the accumulation of unfolded proteins, SpiD3 activates the UPR and hinders protein synthesis in CLL cells. Overall, SpiD3 exploits critical CLL vulnerabilities (i.e., the NFκB pathway and UPR) highlighting its use in drug-resistant CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Transdução de Sinais , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Humanos , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Linhagem Celular Tumoral , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , NF-kappa B/metabolismo , Compostos de Espiro/farmacologia , Compostos de Espiro/uso terapêutico , Sobrevivência Celular/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Receptores de Antígenos de Linfócitos B/metabolismo , Proliferação de Células/efeitos dos fármacos
10.
Cell Death Differ ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802657

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), the most prevalent type of pancreatic cancer, is one of the deadliest forms of cancer with limited therapy options. Overexpression of the heat shock protein 70 (HSP70) is a hallmark of cancer that is strongly associated with aggressive disease and worse clinical outcomes. However, the underlying mechanisms by which HSP70 allows tumor cells to thrive under conditions of continuous stress have not been fully described. Here, we report that PDAC has the highest expression of HSP70 relative to normal tissue across all cancers analyzed. Furthermore, HSP70 expression is associated with tumor grade and is further enhanced in metastatic PDAC. We show that genetic or therapeutic ablation of HSP70 alters mitochondrial subcellular localization, impairs mitochondrial dynamics, and promotes mitochondrial swelling to induce apoptosis. Mechanistically, we find that targeting HSP70 suppresses the PTEN-induced kinase 1 (PINK1) mediated phosphorylation of dynamin-related protein 1 (DRP1). Treatment with the HSP70 inhibitor AP-4-139B was efficacious as a single agent in primary and metastatic mouse models of PDAC. In addition, we demonstrate that HSP70 inhibition promotes the AMP-activated protein kinase (AMPK) mediated phosphorylation of Beclin-1, a key regulator of autophagic flux. Accordingly, we find that the autophagy inhibitor hydroxychloroquine (HCQ) enhances the ability of AP-4-139B to mediate anti-tumor activity in vivo. Collectively, our results suggest that HSP70 is a multi-functional driver of tumorigenesis that orchestrates mitochondrial dynamics and autophagy. Moreover, these findings support the rationale for concurrent inhibition of HSP70 and autophagy as a novel therapeutic approach for HSP70-driven PDAC.

11.
Nat Rev Nephrol ; 19(7): 440-450, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36973495

RESUMO

Renal cell carcinoma (RCC) comprises a group of malignancies arising from the kidney with unique tumour-specific antigen (TSA) signatures that can trigger cytotoxic immunity. Two classes of TSAs are now considered potential drivers of immunogenicity in RCC: small-scale insertions and deletions (INDELs) that result in coding frameshift mutations, and activation of human endogenous retroviruses. The presence of neoantigen-specific T cells is a hallmark of solid tumours with a high mutagenic burden, which typically have abundant TSAs owing to non-synonymous single nucleotide variations within the genome. However, RCC exhibits high cytotoxic T cell reactivity despite only having an intermediate non-synonymous single nucleotide variation mutational burden. Instead, RCC tumours have a high pan-cancer proportion of INDEL frameshift mutations, and coding frameshift INDELs are associated with high immunogenicity. Moreover, cytotoxic T cells in RCC subtypes seem to recognize tumour-specific endogenous retrovirus epitopes, whose presence is associated with clinical responses to immune checkpoint blockade therapy. Here, we review the distinct molecular landscapes in RCC that promote immunogenic responses, discuss clinical opportunities for discovery of biomarkers that can inform therapeutic immune checkpoint blockade strategies, and identify gaps in knowledge for future investigations.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Antígenos de Neoplasias/genética , Inibidores de Checkpoint Imunológico , Neoplasias Renais/patologia , Nucleotídeos
12.
Nat Cancer ; 4(1): 128-147, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36585450

RESUMO

The AURORA US Metastasis Project was established with the goal to identify molecular features associated with metastasis. We assayed 55 females with metastatic breast cancer (51 primary cancers and 102 metastases) by RNA sequencing, tumor/germline DNA exome and low-pass whole-genome sequencing and global DNA methylation microarrays. Expression subtype changes were observed in ~30% of samples and were coincident with DNA clonality shifts, especially involving HER2. Downregulation of estrogen receptor (ER)-mediated cell-cell adhesion genes through DNA methylation mechanisms was observed in metastases. Microenvironment differences varied according to tumor subtype; the ER+/luminal subtype had lower fibroblast and endothelial content, while triple-negative breast cancer/basal metastases showed a decrease in B and T cells. In 17% of metastases, DNA hypermethylation and/or focal deletions were identified near HLA-A and were associated with reduced expression and lower immune cell infiltrates, especially in brain and liver metastases. These findings could have implications for treating individuals with metastatic breast cancer with immune- and HER2-targeting therapies.


Assuntos
Neoplasias Mamárias Animais , Neoplasias de Mama Triplo Negativas , Feminino , Animais , Humanos , Multiômica , Mama , Neoplasias de Mama Triplo Negativas/genética , Metilação de DNA/genética , Neoplasias Mamárias Animais/genética , Epigênese Genética/genética , Microambiente Tumoral/genética
13.
JCI Insight ; 5(11)2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32493845

RESUMO

Recently, we reported that expression of endogenous retroviruses (ERVs) is associated with response to immune checkpoint blockade (ICB) in renal cell carcinoma (RCC). We show that decitabine, a DNA hypomethylating agent, activates transposable element (TE) expression (LINE1 and ERVs ERV3-2 and ERV4700) and antiviral signaling to potentially enhance response to ICB in kidney cancer cell lines and primary cells. KO of RIGI and MDA5 dsRNA sensors attenuated activation of antiviral signaling associated with DNA hypomethylation, and RIGI and MDA5 IPs showed increased ERV binding with decitabine treatment. Bioinformatic analyses showed the decitabine-induced signature could be associated with increased immune infiltration and response to ICB. Cytokine secretion induced by decitabine could modestly improve T cell activation and robustly enhanced T cell migration. In a small retrospective cohort of metastatic clear cell RCC (ccRCC) patients treated with anti-PD1/PDL1 blockade, activation of some antiviral genes was significantly higher in responders. Thus, we identified a potential strategy to induce TE expression through inhibition of DNA methylation in modulating T cell action via regulation of the innate antiviral pathway.


Assuntos
Carcinoma de Células Renais/imunologia , Metilação de DNA , Elementos de DNA Transponíveis/imunologia , DNA de Neoplasias/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Neoplasias Renais/imunologia , Transdução de Sinais/imunologia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/patologia
14.
Theranostics ; 9(17): 4946-4958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410193

RESUMO

Rationale: Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors that present variable outcomes. To date, no effective therapies or reliable prognostic markers are available for patients who develop metastatic PPGL (mPPGL). Our aim was to discover robust prognostic markers validated through in vitro models, and define specific therapeutic options according to tumor genomic features. Methods: We analyzed three PPGL miRNome datasets (n=443), validated candidate markers and assessed them in serum samples (n=36) to find a metastatic miRNA signature. An integrative study of miRNome, transcriptome and proteome was performed to find miRNA targets, which were further characterized in vitro. Results: A signature of six miRNAs (miR-21-3p, miR-183-5p, miR-182-5p, miR-96-5p, miR-551b-3p, and miR-202-5p) was associated with metastatic risk and time to progression. A higher expression of five of these miRNAs was also detected in PPGL patients' liquid biopsies compared with controls. The combined expression of miR-21-3p/miR-183-5p showed the best power to predict metastasis (AUC=0.804, P=4.67·10-18), and was found associated in vitro with pro-metastatic features, such as neuroendocrine-mesenchymal transition phenotype, and increased cell migration rate. A pan-cancer multi-omic integrative study correlated miR-21-3p levels with TSC2 expression, mTOR pathway activation, and a predictive signature for mTOR inhibitor-sensitivity in PPGLs and other cancers. Likewise, we demonstrated in vitro a TSC2 repression and an enhanced rapamycin sensitivity upon miR-21-3p expression. Conclusions: Our findings support the assessment of miR-21-3p/miR-183-5p, in tumors and liquid biopsies, as biomarkers for risk stratification to improve the PPGL patients' management. We propose miR-21-3p to select mPPGL patients who may benefit from mTOR inhibitors.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , MicroRNAs/genética , Paraganglioma/genética , Transcriptoma , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Metástase Neoplásica , Paraganglioma/metabolismo , Paraganglioma/patologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Células Tumorais Cultivadas
16.
Nat Rev Urol ; 15(10): 599-614, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30030490

RESUMO

Renal cell carcinomas (RCCs) are a diverse set of malignancies that have recently been shown to harbour mutations in a number of chromatin modifier genes - including PBRM1, SETD2, BAP1, KDM5C, KDM6A, and MLL2 - through high-throughput sequencing efforts. Current research focuses on understanding the biological activities that chromatin modifiers employ to suppress tumorigenesis and on developing clinical approaches that take advantage of this knowledge. Unsurprisingly, several common themes unify the functions of these epigenetic modifiers, particularly regulation of histone post-translational modifications and nucleosome organization. Furthermore, chromatin modifiers also govern processes crucial for DNA repair and maintenance of genomic integrity as well as the regulation of splicing and other key processes. Many chromatin modifiers have additional non-canonical roles in cytoskeletal regulation, which further contribute to genomic stability, expanding the repertoire of functions that might be essential in tumorigenesis. Our understanding of how mutations in chromatin modifiers contribute to tumorigenesis in RCC is improving but remains an area of intense investigation. Importantly, elucidating the activities of chromatin modifiers offers intriguing opportunities for the development of new therapeutic interventions in RCC.


Assuntos
Carcinoma de Células Renais/metabolismo , Epigênese Genética , Neoplasias Renais/metabolismo , Carcinoma de Células Renais/genética , Cromatina/metabolismo , Humanos , Neoplasias Renais/genética , Mutação/genética
17.
JCI Insight ; 3(4)2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29467323

RESUMO

Von Hippel-Lindau (VHL) gene mutations induce neural tissue hemangioblastomas, as well as highly vascularized clear cell renal cell carcinomas (ccRCCs). Pathological vessel remodeling arises from misregulation of HIFs and VEGF, among other genes. Variation in disease penetrance has long been recognized in relation to genotype. We show Vhl mutations also disrupt Notch signaling, causing mutation-specific vascular abnormalities, e.g., type 1 (null) vs. type 2B (murine G518A representing human R167Q). In conditional mutation retina vasculature, Vhl-null mutation (i.e., UBCCreER/+Vhlfl/fl) had little effect on initial vessel branching, but it severely reduced arterial and venous branching at later stages. Interestingly, this mutation accelerated arterial maturation, as observed in retina vessel morphology and aberrant α-smooth muscle actin localization, particularly in vascular pericytes. RNA sequencing analysis identified gene expression changes within several key pathways, including Notch and smooth muscle cell contractility. Notch inhibition failed to reverse later-stage branching defects but rescued the accelerated arterialization. Retinal vessels harboring the type 2B Vhl mutation (i.e., UBCCreER/+Vhlfl/2B) displayed stage-specific changes in vessel branching and an advanced progression toward an arterial phenotype. Disrupting Notch signaling in type 2B mutants increased both artery and vein branching and restored arterial maturation toward nonmutant levels. By revealing differential effects of the null and type 2B Vhl mutations on vessel branching and maturation, these data may provide insight into the variability of VHL-associated vascular changes - particularly the heterogeneity and aggressiveness in ccRCC vessel growth - and also suggest Notch pathway targets for treating VHL syndrome.


Assuntos
Células Endoteliais/patologia , Hemangioblastoma/patologia , Receptores Notch/metabolismo , Artéria Retiniana/crescimento & desenvolvimento , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Doença de von Hippel-Lindau/patologia , Animais , Diaminas/farmacologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Hemangioblastoma/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Microvasos/citologia , Microvasos/crescimento & desenvolvimento , Microvasos/patologia , Mutação , Receptores Notch/antagonistas & inibidores , Artéria Retiniana/citologia , Artéria Retiniana/patologia , Tiazóis/farmacologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Doença de von Hippel-Lindau/genética
18.
JCI Insight ; 3(16)2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30135306

RESUMO

Although a subset of clear cell renal cell carcinoma (ccRCC) patients respond to immune checkpoint blockade (ICB), predictors of response remain uncertain. We investigated whether abnormal expression of endogenous retroviruses (ERVs) in tumors is associated with local immune checkpoint activation (ICA) and response to ICB. Twenty potentially immunogenic ERVs (πERVs) were identified in ccRCC in The Cancer Genome Atlas data set, and tumors were stratified into 3 groups based on their expression levels. πERV-high ccRCC tumors showed increased immune infiltration, checkpoint pathway upregulation, and higher CD8+ T cell fraction in infiltrating leukocytes compared with πERV-low ccRCC tumors. Similar results were observed in ER+/HER2- breast, colon, and head and neck squamous cell cancers. ERV expression correlated with expression of genes associated with histone methylation and chromatin regulation, and πERV-high ccRCC was enriched in BAP1 mutant tumors. ERV3-2 expression correlated with ICA in 11 solid cancers, including the 4 named above. In a small retrospective cohort of 24 metastatic ccRCC patients treated with single-agent PD-1/PD-L1 blockade, ERV3-2 expression in tumors was significantly higher in responders compared with nonresponders. Thus, abnormal expression of πERVs is associated with ICA in several solid cancers, including ccRCC, and ERV3-2 expression is associated with response to ICB in ccRCC.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Retrovirus Endógenos/genética , Neoplasias Renais/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Imunológicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/mortalidade , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/mortalidade , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Intervalo Livre de Progressão , Estudos Retrospectivos , Análise de Sequência de RNA
19.
J Clin Invest ; 128(11): 4804-4820, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137025

RESUMO

Human endogenous retroviruses (hERVs) are remnants of exogenous retroviruses that have integrated into the genome throughout evolution. We developed a computational workflow, hervQuant, which identified more than 3,000 transcriptionally active hERVs within The Cancer Genome Atlas (TCGA) pan-cancer RNA-Seq database. hERV expression was associated with clinical prognosis in several tumor types, most significantly clear cell renal cell carcinoma (ccRCC). We explored two mechanisms by which hERV expression may influence the tumor immune microenvironment in ccRCC: (i) RIG-I-like signaling and (ii) retroviral antigen activation of adaptive immunity. We demonstrated the ability of hERV signatures associated with these immune mechanisms to predict patient survival in ccRCC, independent of clinical staging and molecular subtyping. We identified potential tumor-specific hERV epitopes with evidence of translational activity through the use of a ccRCC ribosome profiling (Ribo-Seq) dataset, validated their ability to bind HLA in vitro, and identified the presence of MHC tetramer-positive T cells against predicted epitopes. hERV sequences identified through this screening approach were significantly more highly expressed in ccRCC tumors responsive to treatment with programmed death receptor 1 (PD-1) inhibition. hervQuant provides insights into the role of hERVs within the tumor immune microenvironment, as well as evidence that hERV expression could serve as a biomarker for patient prognosis and response to immunotherapy.


Assuntos
Carcinoma de Células Renais , Retrovirus Endógenos , Imunoterapia , Neoplasias Renais , Microambiente Tumoral , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/terapia , Retrovirus Endógenos/genética , Retrovirus Endógenos/imunologia , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Neoplasias Renais/terapia , Prognóstico , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
20.
Cancer Res ; 78(12): 3135-3146, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29724720

RESUMO

Loss of the short arm of chromosome 3 (3p) occurs early in >95% of clear cell renal cell carcinoma (ccRCC). Nearly ubiquitous 3p loss in ccRCC suggests haploinsufficiency for 3p tumor suppressors as early drivers of tumorigenesis. We previously reported methyltransferase SETD2, which trimethylates H3 histones on lysine 36 (H3K36me3) and is located in the 3p deletion, to also trimethylate microtubules on lysine 40 (αTubK40me3) during mitosis, with αTubK40me3 required for genomic stability. We now show that monoallelic, Setd2-deficient cells retaining H3K36me3, but not αTubK40me3, exhibit a dramatic increase in mitotic defects and micronuclei count, with increased viability compared with biallelic loss. In SETD2-inactivated human kidney cells, rescue with a pathogenic SETD2 mutant deficient for microtubule (αTubK40me3), but not histone (H3K36me3) methylation, replicated this phenotype. Genomic instability (micronuclei) was also a hallmark of patient-derived cells from ccRCC. These data show that the SETD2 tumor suppressor displays a haploinsufficiency phenotype disproportionately impacting microtubule methylation and serves as an early driver of genomic instability.Significance: Loss of a single allele of a chromatin modifier plays a role in promoting oncogenesis, underscoring the growing relevance of tumor suppressor haploinsufficiency in tumorigenesis. Cancer Res; 78(12); 3135-46. ©2018 AACR.


Assuntos
Carcinoma de Células Renais/genética , Cromossomos Humanos Par 3/genética , Histona-Lisina N-Metiltransferase/genética , Neoplasias Renais/genética , Microtúbulos/metabolismo , Animais , Carcinogênese/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Fibroblastos , Técnicas de Silenciamento de Genes , Instabilidade Genômica , Haploinsuficiência , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Neoplasias Renais/patologia , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/patologia , Lisina/metabolismo , Metilação , Camundongos , Micronúcleos com Defeito Cromossômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA