Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 28(1): 117-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24121462

RESUMO

The purpose of this study was the generation of central nervous system (CNS)-excluded cannabinoid receptor agonists to test the hypothesis that inhibition of spasticity, due to CNS autoimmunity, could be controlled by affecting neurotransmission within the periphery. Procedures included identification of chemicals and modeling to predict the mode of exclusion; induction and control of spasticity in the ABH mouse model of multiple sclerosis; conditional deletion of CB1 receptor in peripheral nerves; side-effect profiling to demonstrate the mechanism of CNS-exclusion via drug pumps; genome-wide association study in N2(129×ABH) backcross to map polymorphic cannabinoid drug pump; and sequencing and detection of cannabinoid drug-pump activity in human brain endothelial cell lines. Three drugs (CT3, SAB378 and SAD448) were identified that control spasticity via action on the peripheral nerve CB1 receptor. These were peripherally restricted via drug pumps that limit the CNS side effects (hypothermia) of cannabinoids to increase the therapeutic window. A cannabinoid drug pump is polymorphic and functionally lacking in many laboratory (C57BL/6, 129, CD-1) mice used for transgenesis, pharmacology, and toxicology studies. This phenotype was mapped and controlled by 1-3 genetic loci. ABCC1 within a cluster showing linkage is a cannabinoid CNS-drug pump. Global and conditional CB1 receptor-knockout mice were used as controls. In summary, CNS-excluded CB1 receptor agonists are a novel class of therapeutic agent for spasticity.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Espasticidade Muscular/tratamento farmacológico , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Animais , Canabinoides/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
2.
Transl Oncol ; 8(5): 387-399, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26500029

RESUMO

Urothelial carcinoma (UC) causes significant morbidity and remains the most expensive cancer to treat because of the need for repeated resections and lifelong monitoring for patients with non-muscle-invasive bladder cancer (NMIBC). Novel therapeutics and stratification approaches are needed to improve the outlook for both NMIBC and muscle-invasive bladder cancer. We investigated the expression and effects of B Lymphoma Mo-MLV Insertion Region 1 (BMI1) in UC. BMI1 was found to be overexpressed in most UC cell lines and primary tumors by quantitative real-time polymerase chain reaction and immunohistochemistry. In contrast to some previous reports, no association with tumor stage or grade was observed in two independent tumor panels. Furthermore, upregulation of BMI1 was detected in premalignant bladder lesions, suggesting a role early in tumorigenesis. BMI1 is not located within a common region of genomic amplification in UC. The CDKN2A locus (which encodes the p16 tumor suppressor gene) is a transcriptional target of BMI1 in some cellular contexts. In UC cell lines and primary tissues, no correlation between BMI1 and p16 expression was observed. Retroviral-mediated overexpression of BMI1 immortalized normal human urothelial cells (NHUC) in vitro and was associated with induction of telomerase activity, bypass of senescence, and repression of differentiation. The effects of BMI1 on gene expression were identified by expression microarray analysis of NHUC-BMI1. Metacore analysis of the gene expression profile implicated downstream effects of BMI1 on α4/ß1 integrin-mediated adhesion, cytoskeleton remodeling, and CREB1-mediated transcription.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA