Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sensors (Basel) ; 23(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37514544

RESUMO

Nowadays, Predictive Maintenance is a mandatory tool to reduce the cost of production in the semiconductor industry. This paper considers as a case study a critical part of the electrochemical deposition system, namely, the four Pins that hold a wafer inside a chamber. The aim of the study is to replace the schedule of replacement of Pins presently based on fixed timing (Preventive Maintenance) with a Hardware/Software system that monitors the conditions of the Pins and signals possible conditions of failure (Predictive Maintenance). The system is composed of optical sensors endowed with an image processing methodology. The prototype built for this study includes one optical camera that simultaneously takes images of the four Pins on a roughly daily basis. Image processing includes a pre-processing phase where images taken by the camera at different times are coregistered and equalized to reduce variations in time due to movements of the system and to different lighting conditions. Then, some indicators are introduced based on statistical arguments that detect outlier conditions of each Pin. Such indicators are pixel-wise to identify small artifacts. Finally, criteria are indicated to distinguish artifacts due to normal operations in the chamber from issues prone to a failure of the Pin. An application (PINapp) with a user friendly interface has been developed that guides industry experts in monitoring the system and alerting in case of potential issues. The system has been validated on a plant at STMicroelctronics in Catania (Italy). The study allowed for understanding the mechanism that gives rise to the rupture of the Pins and to increase the time of replacement of the Pins by a factor at least 2, thus reducing downtime.

2.
J Biol Chem ; 294(3): 861-873, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30459231

RESUMO

The highly conserved zinc finger CCCTC-binding factor (CTCF) regulates genomic imprinting and gene expression by acting as a transcriptional activator or repressor of promoters and insulator of enhancers. The multiple functions of CTCF are accomplished by co-association with other protein partners and are dependent on genomic context and tissue specificity. Despite the critical role of CTCF in the organization of genome structure, to date, only a subset of CTCF interaction partners have been identified. Here we present a large-scale identification of CTCF-binding partners using affinity purification and high-resolution LC-MS/MS analysis. In addition to functional enrichment of specific protein families such as the ribosomal proteins and the DEAD box helicases, we identified novel high-confidence CTCF interactors that provide a still unexplored biochemical context for CTCF's multiple functions. One of the newly validated CTCF interactors is BRG1, the major ATPase subunit of the chromatin remodeling complex SWI/SNF, establishing a relationship between two master regulators of genome organization. This work significantly expands the current knowledge of the human CTCF interactome and represents an important resource to direct future studies aimed at uncovering molecular mechanisms modulating CTCF pleiotropic functions throughout the genome.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Fator de Ligação a CCCTC/genética , Linhagem Celular Tumoral , DNA Helicases/genética , Humanos , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética
3.
Sensors (Basel) ; 20(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326168

RESUMO

Thermal infrared remote sensing measurements have greatly improved in terms of spectral, spatial, and temporal resolution. These improvements are producing a clearer picture of the land surface and Earth atmospheric composition than ever before. Nevertheless, the analysis of this big quantity of data presents important challenges due to incomplete temporal and spatial recorded information. The aim of the present paper is to discuss a methodology to retrieve missing values of some interesting geophysical variables on a spatial field retrieved from spatially scattered infrared satellite observations in order to yield level 3, regularly gridded, data. The technique is based on a 2-Dimensional (2D) Optimal Interpolation (OI) scheme and is derived from the broad class of Kalman filter or Bayesian estimation theory. The goodness of the approach has been tested on 15-min temporal resolution Spinning Enhanced Visible and Infrared Imager (SEVIRI) emissivity and surface temperature (ST) products over South Italy (land and sea), on Infrared Atmospheric Sounding Interferometer (IASI) atmospheric ammonia ( N H 3 ) concentration over North Italy and carbon monoxide ( C O ), sulfur dioxide ( S O 2 ) and N H 3 concentrations over China. All these gases affect air quality. Moreover, sea surface temperature (SST) retrievals have been compared with gridded data from MODIS (Moderate-resolution Imaging Spectroradiometer) observations. For gases concentration we have considered data from 3 different emission inventories, that is, Emissions Database for Global Atmospheric Research v3.4.2 (EDGARv3.4.2), the Regional Emission inventory in ASiav3.1 (REASv3.1) and MarcoPolov0.1, plus an independent study. The results show the efficacy of the proposed strategy to better capture the daily cycle for surface parameters and to detect hotspots of severe emissions from gas sources affecting air quality such as C O and N H 3 and, therefore, to yield valuable information on the variability of gas concentration to complete ground stations measurements.

4.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255744

RESUMO

The transcription factor CCCTC-binding factor (CTCF) modulates pleiotropic functions mostly related to gene expression regulation. The role of CTCF in large scale genome organization is also well established. A unifying model to explain relationships among many CTCF-mediated activities involves direct or indirect interactions with numerous protein cofactors recruited to specific binding sites. The co-association of CTCF with other architectural proteins such as cohesin, chromodomain helicases, and BRG1, further supports the interplay between master regulators of mammalian genome folding. Here, we report a comprehensive LC-MS/MS mapping of the components of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex co-associated with CTCF including subunits belonging to the core, signature, and ATPase modules. We further show that the localization patterns of representative SWI/SNF members significantly overlap with CTCF sites on transcriptionally active chromatin regions. Moreover, we provide evidence of a direct binding of the BRK-BRG1 domain to the zinc finger motifs 4-8 of CTCF, thus, suggesting that these domains mediate the interaction of CTCF with the SWI/SNF complex. These findings provide an updated view of the cooperative nature between CTCF and the SWI/SNF ATP-dependent chromatin remodeling complexes, an important step for understanding how these architectural proteins collaborate to shape the genome.


Assuntos
Fator de Ligação a CCCTC/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Dedos de Zinco/genética , Adenosina Trifosfatases/genética , Sítios de Ligação/genética , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Complexos Multiproteicos/genética , Mapas de Interação de Proteínas/genética , Espectrometria de Massas em Tandem , Coesinas
5.
Nucleic Acids Res ; 44(3): 1118-32, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26481358

RESUMO

Imprinting Control Regions (ICRs) need to maintain their parental allele-specific DNA methylation during early embryogenesis despite genome-wide demethylation and subsequent de novo methylation. ZFP57 and KAP1 are both required for maintaining the repressive DNA methylation and H3-lysine-9-trimethylation (H3K9me3) at ICRs. In vitro, ZFP57 binds a specific hexanucleotide motif that is enriched at its genomic binding sites. We now demonstrate in mouse embryonic stem cells (ESCs) that SNPs disrupting closely-spaced hexanucleotide motifs are associated with lack of ZFP57 binding and H3K9me3 enrichment. Through a transgenic approach in mouse ESCs, we further demonstrate that an ICR fragment containing three ZFP57 motif sequences recapitulates the original methylated or unmethylated status when integrated into the genome at an ectopic position. Mutation of Zfp57 or the hexanucleotide motifs led to loss of ZFP57 binding and DNA methylation of the transgene. Finally, we identified a sequence variant of the hexanucleotide motif that interacts with ZFP57 both in vivo and in vitro. The presence of multiple and closely located copies of ZFP57 motif variants emerges as a distinct characteristic that is required for the faithful maintenance of repressive epigenetic marks at ICRs and other ZFP57 binding sites.


Assuntos
Metilação de DNA , Impressão Genômica , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Repressoras/genética , Alelos , Animais , Sequência de Bases , Linhagem Celular , Imunoprecipitação da Cromatina , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Motivos de Nucleotídeos/genética , Polimorfismo de Nucleotídeo Único , Ligação Proteica/genética , Proteínas Repressoras/metabolismo , Proteína 28 com Motivo Tripartido
6.
BMC Bioinformatics ; 15: 135, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24885830

RESUMO

BACKGROUND: The main goal of the whole transcriptome analysis is to correctly identify all expressed transcripts within a specific cell/tissue--at a particular stage and condition--to determine their structures and to measure their abundances. RNA-seq data promise to allow identification and quantification of transcriptome at unprecedented level of resolution, accuracy and low cost. Several computational methods have been proposed to achieve such purposes. However, it is still not clear which promises are already met and which challenges are still open and require further methodological developments. RESULTS: We carried out a simulation study to assess the performance of 5 widely used tools, such as: CEM, Cufflinks, iReckon, RSEM, and SLIDE. All of them have been used with default parameters. In particular, we considered the effect of the following three different scenarios: the availability of complete annotation, incomplete annotation, and no annotation at all. Moreover, comparisons were carried out using the methods in three different modes of action. In the first mode, the methods were forced to only deal with those isoforms that are present in the annotation; in the second mode, they were allowed to detect novel isoforms using the annotation as guide; in the third mode, they were operating in fully data driven way (although with the support of the alignment on the reference genome). In the latter modality, precision and recall are quite poor. On the contrary, results are better with the support of the annotation, even though it is not complete. Finally, abundance estimation error often shows a very skewed distribution. The performance strongly depends on the true real abundance of the isoforms. Lowly (and sometimes also moderately) expressed isoforms are poorly detected and estimated. In particular, lowly expressed isoforms are identified mainly if they are provided in the original annotation as potential isoforms. CONCLUSIONS: Both detection and quantification of all isoforms from RNA-seq data are still hard problems and they are affected by many factors. Overall, the performance significantly changes since it depends on the modes of action and on the type of available annotation. Results obtained using complete or partial annotation are able to detect most of the expressed isoforms, even though the number of false positives is often high. Fully data driven approaches require more attention, at least for complex eucaryotic genomes. Improvements are desirable especially for isoform quantification and for isoform detection with low abundance.


Assuntos
Isoformas de RNA/análise , Software , Algoritmos , Perfilação da Expressão Gênica , Humanos , Isoformas de RNA/química , Isoformas de RNA/metabolismo , Análise de Sequência de RNA/métodos
7.
J Biomed Biotechnol ; 2010: 853916, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20625424

RESUMO

In recent years, the introduction of massively parallel sequencing platforms for Next Generation Sequencing (NGS) protocols, able to simultaneously sequence hundred thousand DNA fragments, dramatically changed the landscape of the genetics studies. RNA-Seq for transcriptome studies, Chip-Seq for DNA-proteins interaction, CNV-Seq for large genome nucleotide variations are only some of the intriguing new applications supported by these innovative platforms. Among them RNA-Seq is perhaps the most complex NGS application. Expression levels of specific genes, differential splicing, allele-specific expression of transcripts can be accurately determined by RNA-Seq experiments to address many biological-related issues. All these attributes are not readily achievable from previously widespread hybridization-based or tag sequence-based approaches. However, the unprecedented level of sensitivity and the large amount of available data produced by NGS platforms provide clear advantages as well as new challenges and issues. This technology brings the great power to make several new biological observations and discoveries, it also requires a considerable effort in the development of new bioinformatics tools to deal with these massive data files. The paper aims to give a survey of the RNA-Seq methodology, particularly focusing on the challenges that this application presents both from a biological and a bioinformatics point of view.


Assuntos
Perfilação da Expressão Gênica/métodos , RNA/análise , RNA/genética , Análise de Sequência de RNA/métodos , Animais , Biologia Computacional , Regulação da Expressão Gênica , Genoma/genética , Humanos
8.
Front Genet ; 9: 206, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29963073

RESUMO

Breast cancer is one of the most common invasive tumors causing high mortality among women. It is characterized by high heterogeneity regarding its biological and clinical characteristics. Several high-throughput assays have been used to collect genome-wide information for many patients in large collaborative studies. This knowledge has improved our understanding of its biology and led to new methods of diagnosing and treating the disease. In particular, system biology has become a valid approach to obtain better insights into breast cancer biological mechanisms. A crucial component of current research lies in identifying novel biomarkers that can be predictive for breast cancer patient prognosis on the basis of the molecular signature of the tumor sample. However, the high dimension and low sample size of data greatly increase the difficulty of cancer survival analysis demanding for the development of ad-hoc statistical methods. In this work, we propose novel screening-network methods that predict patient survival outcome by screening key survival-related genes and we assess the capability of the proposed approaches using METABRIC dataset. In particular, we first identify a subset of genes by using variable screening techniques on gene expression data. Then, we perform Cox regression analysis by incorporating network information associated with the selected subset of genes. The novelty of this work consists in the improved prediction of survival responses due to the different types of screenings (i.e., a biomedical-driven, data-driven and a combination of the two) before building the network-penalized model. Indeed, the combination of the two screening approaches allows us to use the available biological knowledge on breast cancer and complement it with additional information emerging from the data used for the analysis. Moreover, we also illustrate how to extend the proposed approaches to integrate an additional omic layer, such as copy number aberrations, and we show that such strategies can further improve our prediction capabilities. In conclusion, our approaches allow to discriminate patients in high-and low-risk groups using few potential biomarkers and therefore, can help clinicians to provide more precise prognoses and to facilitate the subsequent clinical management of patients at risk of disease.

9.
Front Physiol ; 7: 208, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27378931

RESUMO

International initiatives such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) are collecting multiple datasets at different genome-scales with the aim of identifying novel cancer biomarkers and predicting survival of patients. To analyze such data, several statistical methods have been applied, among them Cox regression models. Although these models provide a good statistical framework to analyze omic data, there is still a lack of studies that illustrate advantages and drawbacks in integrating biological information and selecting groups of biomarkers. In fact, classical Cox regression algorithms focus on the selection of a single biomarker, without taking into account the strong correlation between genes. Even though network-based Cox regression algorithms overcome such drawbacks, such network-based approaches are less widely used within the life science community. In this article, we aim to provide a clear methodological framework on the use of such approaches in order to turn cancer research results into clinical applications. Therefore, we first discuss the rationale and the practical usage of three recently proposed network-based Cox regression algorithms (i.e., Net-Cox, AdaLnet, and fastcox). Then, we show how to combine existing biological knowledge and available data with such algorithms to identify networks of cancer biomarkers and to estimate survival of patients. Finally, we describe in detail a new permutation-based approach to better validate the significance of the selection in terms of cancer gene signatures and pathway/networks identification. We illustrate the proposed methodology by means of both simulations and real case studies. Overall, the aim of our work is two-fold. Firstly, to show how network-based Cox regression models can be used to integrate biological knowledge (e.g., multi-omics data) for the analysis of survival data. Secondly, to provide a clear methodological and computational approach for investigating cancers regulatory networks.

10.
Sci Total Environ ; 493: 1025-35, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25016108

RESUMO

The use of compost for soil amendment is a promising agricultural practice environmentally and economically viable. In the framework of a wide research project designed to evaluate the effects of soil amendment with municipal solid waste compost in comparison with traditional mineral fertilization practices, 54 different cultivars (Cvs) of potatoes were AFLP (amplified fragment length polymorphism) molecularly fingerprinted. The seven most genetically biodiverse potato Cvs were used to establish an experimental field in southern Italy. The field area was divided into two portions fertilized with compost (20 Mg ha(-1)) or with ammonium sulphate (200 kg ha(-1)). No significant differences in productivity, organoleptic characteristics and element concentrations were observed between the potato tubers obtained with both kinds of soil fertilization, while the tubers grown on compost amended soil showed, on average, higher K concentrations with respect to those grown on mineral fertilised soil. cDNA-AFLP (complementary DNA-AFLP) and MSAP (methylation sensitive amplified polymorphism) analyses were carried out on both leaves and tubers of one selected Cv to estimate if any transcriptome alterations or epigenetic modifications were induced by the two kinds of fertilization, however no variations were detected. Chemical and biological soil qualities (i.e., microbial respiration, FDA hydrolysis, alkaline and acid phosphatase) were assessed on soil samples at the start of the experiment and at the end of potato crop cycle. No significant differences in soil pH and limited ones, in the available fraction of some trace elements, were observed; while conductivity was much higher for the compost amended portion of the experimental field. Microbial respiration, FDA hydrolysis and acid phosphatase activities were significantly increased by compost amendment, in comparison with mineral fertilization. Finally, a sensory panel of potato Cvs detected no significant differences among qualitative descriptors and among potatoes coming from the two differently fertilized soils.


Assuntos
Agricultura/métodos , Epigênese Genética , Eliminação de Resíduos/métodos , Solo/química , Solanum tuberosum/crescimento & desenvolvimento , Fertilizantes , Itália
11.
Plant Sci ; 210: 82-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23849116

RESUMO

The present study is focused on determining the olive oil fatty acid composition of ancient and recent varieties of the Campania region (Italy), but also on molecularly characterizing the most common cultivated varieties in the same region, together with olive trees of the garden of the University Campus of Salerno and of three olive groves of south Italy. Fatty acid methyl esters in the extra virgin oil derived olive fruits were determined, during three consecutive harvests, by gas chromatography. The statistical analysis on fatty acid composition was performed with the ffmanova package. The genetic biodiversity of the olive collection was estimated by using eight highly polymorphic microsatellite loci and calculating the most commonly used indexes. "Dice index" was employed to estimate the similarity level of the analysed olive samples, while the Structure software to infer their genetic structure. The fatty acid content of extra virgin olive oils, produced from the two olive groves in Campania, suggests that the composition is mainly determined by genotype and not by cultural practices or climatic conditions. Furthermore, the analysis conducted on the molecular data revealed the presence of 100 distinct genotypes and seven homonymies out of the 136 analysed trees.


Assuntos
Ácidos Graxos/análise , Repetições de Microssatélites/genética , Olea/genética , Óleos de Plantas/química , Biodiversidade , Cromatografia Gasosa , Biologia Computacional , Impressões Digitais de DNA , DNA de Plantas , Frutas/química , Frutas/genética , Genótipo , Itália , Olea/química , Azeite de Oliva , Filogenia , Especificidade da Espécie
12.
PLoS One ; 7(9): e42489, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22984403

RESUMO

A major goal of bioinformatics is the characterization of transcription factors and the transcriptional programs they regulate. Given the speed of genome sequencing, we would like to quickly annotate regulatory sequences in newly-sequenced genomes. In such cases, it would be helpful to predict sequence motifs by using experimental data from closely related model organism. Here we present a general algorithm that allow to identify transcription factor binding sites in one newly sequenced species by performing Bayesian regression on the annotated species. First we set the rationale of our method by applying it within the same species, then we extend it to use data available in closely related species. Finally, we generalise the method to handle the case when a certain number of experiments, from several species close to the species on which to make inference, are available. In order to show the performance of the method, we analyse three functionally related networks in the Ascomycota. Two gene network case studies are related to the G2/M phase of the Ascomycota cell cycle; the third is related to morphogenesis. We also compared the method with MatrixReduce and discuss other types of validation and tests. The first network is well known and provides a biological validation test of the method. The two cell cycle case studies, where the gene network size is conserved, demonstrate an effective utility in annotating new species sequences using all the available replicas from model species. The third case, where the gene network size varies among species, shows that the combination of information is less powerful but is still informative. Our methodology is quite general and could be extended to integrate other high-throughput data from model organisms.


Assuntos
Ascomicetos/genética , Modelos Biológicos , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Sequência de DNA , Estatística como Assunto , Sequência de Bases , Candida/citologia , Candida/genética , Citocinese/genética , Redes Reguladoras de Genes/genética , Funções Verossimilhança , Dados de Sequência Molecular , Motivos de Nucleotídeos/genética , Filogenia , Schizosaccharomyces/genética , Especificidade da Espécie , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA