Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Anal Chem ; 95(36): 13546-13554, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655548

RESUMO

Accurate quantitative analysis in liquid chromatography-mass spectrometry (LC-MS) benefits from calibration curves generated in the same matrix as the study sample. In the case of endogenous compound quantification, as no blank matrix exists, the multitargeted internal calibration (MTIC) is an attractive and straightforward approach to avoid the need for extensive matrix similarity evaluation. Its principle is to take advantage of stable isotope labeled (SIL) standards as internal calibrants to simultaneously quantify authentic analytes using a within sample calibration. An MTIC workflow was developed for the simultaneous quantification of metabolites related to chronic kidney disease (CKD) using a volumetric microsampling device to collect 20 µL of serum or plasma, followed by a single-step extraction with acetonitrile/water and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Since a single concentration of internal calibrant is necessary to calculate the study sample concentration, the instrument response function was investigated to determine the best SIL concentration. After validation, the trueness of 16 endogenous analytes in authentic human serum ranged from 72.2 to 116.0%, the repeatability from 1.9 to 11.3%, and the intermediate precision ranged overall from 2.1 to 15.4%. The proposed approach was applied to plasma samples collected from healthy control participants and two patient groups diagnosed with CKD. Results confirmed substantial concentration differences between groups for several analytes, including indoxyl sulfate and cortisone, as well as metabolite enrichment in the kynurenine and indole pathways. Multitargeted methodologies represent a major step toward rapid and straightforward LC-MS/MS absolute quantification of endogenous biomarkers, which could change the paradigm of MS use in clinical laboratories.


Assuntos
Insuficiência Renal Crônica , Espectrometria de Massas em Tandem , Humanos , Calibragem , Cromatografia Líquida , Insuficiência Renal Crônica/diagnóstico
2.
Chimia (Aarau) ; 76(1-2): 90-100, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38069754

RESUMO

Untargeted metabolomics is now widely recognized as a useful tool for exploring metabolic changes taking place in biological systems under different conditions. In this article, we aim to provide a short overview of the liquid-phase separation methods hyphenated to MS to perform untargeted metabolomics of biological samples. Each approach is complemented by up-to-date literature to guide readers, as well as practical information for avoiding or fixing some of the most frequently encountered pitfalls. This article covers mainly data acquisition, but a short discussion is provided regarding signal processing and data treatment, as well as data analysis and its biological interpretation in the context of metabolomic studies.

3.
Food Chem X ; 23: 101565, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39007114

RESUMO

Neonicotinoids, a highly effective class of insecticides used worldwide, have been identified as a major cause of concern for biodiversity. To assess the ecological and environmental consequences of neonicotinoids' use, reliable analytical methodologies, including calibration approaches, are needed. Here, we compared the performance of internal calibration (IC) using a single concentration of stable isotope-labeled standard (SIL) with classical multipoint external calibration (EC) for the quantification of six neonicotinoids in honey. IC showed acceptable levels of trueness (86.3% - 116.0%) and precision (1.4% - 20.8%), although slight biases were observed at very low concentrations compared to EC. When applied to 32 original honey samples, both approaches showed strong agreement (R2 > 0.998) with proportional biases lower than 5%. These results highlight the possibility of implementing IC to simplify quantification in liquid chromatography-mass spectrometry-based pesticide applications.

4.
Anal Chim Acta ; 1263: 341284, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37225336

RESUMO

BACKGROUND: Adequately handling unbalanced groups remains one of the major challenges for the analysis of multivariate data collected from multifactorial experimental designs. While partial least squares-based methods, such as analysis of variance multiblock orthogonal partial least squares (AMOPLS), can offer better discrimination between factor levels, they can be more heavily affected by this issue, and unbalanced designs of experiments may lead to a substantial confusion of the effects. Even state-of-the-art analysis of variance (ANOVA) decomposition methodologies using general linear models (GLM) lack the ability to efficiently disentangle these sources of variation when combined with AMOPLS. RESULTS: A versatile solution developed as an extension of a prior rebalancing strategy is proposed for the first decomposition step based on ANOVA. This approach has the advantage of yielding an unbiased estimation of the parameters and retaining the within-group variation in the rebalanced design, while preserving the orthogonality of effect matrices, even in presence of unequal group sizes. This property is of utmost importance for model interpretation because it avoids mixing sources of variation related to the different effects in the design. A real case study involving metabolomic data from in vitro toxicological experiments was used to demonstrate the potential of this strategy to handle unequal group sizes using a supervised approach. Primary 3D rat neural cell cultures were exposed to trimethyltin following a multifactorial design of experiments involving three fixed effect factors. SIGNIFICANCE AND NOVELTY: The rebalancing strategy was demonstrated as a novel and potent solution to handle unbalanced experimental designs by offering unbiased parameter estimators and orthogonal submatrices, thus avoiding confusion of the effects and facilitating model interpretation. Moreover, it can be combined with any multivariate method used for the analysis of high-dimensional data collected from multifactorial designs.


Assuntos
Metabolômica , Projetos de Pesquisa , Animais , Ratos , Análise dos Mínimos Quadrados , Análise de Variância , Modelos Lineares , Sulfadiazina
5.
Artigo em Inglês | MEDLINE | ID: mdl-37393882

RESUMO

Different calibration strategies are used in liquid chromatography hyphenated to mass spectrometry (LC-MS) bioanalysis. Currently, the surrogate matrix and surrogate analyte represent the most widely used approaches to compensate for the lack of analyte-free matrices in endogenous compounds quantification. In this context, there is a growing interest in rationalizing and simplifying quantitative analysis using a one-point concentration level of stable isotope-labeled (SIL) standards as surrogate calibrants. Accordingly, an internal calibration (IC) can be applied when the instrument response is translated into analyte concentration via the analyte-to-SIL ratio performed directly in the study sample. Since SILs are generally used as internal standards to normalize variability between authentic study sample matrix and surrogate matrix used for the calibration, IC can be calculated even if the calibration protocol was achieved for an external calibration (EC). In this study, a complete dataset of a published and fully validated method to quantify an extended steroid profile in serum was recomputed by adapting the role of SIL internal standards as surrogate calibrants. Using the validation samples, the quantitative performances for IC were comparable with the original method, showing acceptable trueness (79%-115%) and precision (0.8%-11.8%) for the 21 detected steroids. The IC methodology was then applied to human serum samples (n = 51) from healthy women and women diagnosed with mild hyperandrogenism, showing high agreement (R2 > 0.98) with the concentrations obtained using the conventional quantification based on EC. For IC, Passing-Bablok regression showed proportional biases between -15.0% and 11.3% for all quantified steroids, with an average difference of -5.8% compared to EC. These results highlight the reliability and the advantages of implementing IC in clinical laboratories routine to simplify quantification in LC-MS bioanalysis, especially when a large panel of analytes is monitored.


Assuntos
Esteroides , Espectrometria de Massas em Tandem , Feminino , Humanos , Espectrometria de Massas em Tandem/métodos , Calibragem , Reprodutibilidade dos Testes , Cromatografia Líquida/métodos
6.
Anal Chim Acta ; 1267: 341389, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257979

RESUMO

BACKGROUND: Most current state-of-the-art strategies to generate individual adaptive reference ranges are designed to monitor one clinical parameter at a time. An innovative methodology is proposed for the simultaneous longitudinal monitoring of multiple biomarkers. The estimation of individual thresholds is performed by applying a Bayesian modeling strategy to a multivariate score integrating several biomarkers (compound concentration and/or ratio). This multimodal monitoring was applied to data from a clinical study involving 14 female volunteers with normal menstrual cycles receiving testosterone via transdermal route, as to test its ability to detect testosterone administration. The study samples consisted of urine and blood collected during 4 weeks of a control phase and 4 weeks with a daily testosterone gel application. RESULTS: Integrating multiple biomarkers improved the detection of testosterone gel administration with substantially higher sensitivity compared with the distinct follow-up of each biomarker, when applied to selected urine and serum steroid biomarkers, as well as the combination of both. Among the 175 known positive samples, 38% were identified by the multimodal approach using urine biomarkers, 79% using serum biomarkers and 83% by combining biomarkers from both biological matrices, whereas 10%, 67% and 64% were respectively detected using standard unimodal monitoring. SIGNIFICANCE AND NOVELTY: The detection of abnormal patterns can be improved using multimodal approaches. The combination of urine and serum biomarkers reduced the overall number of false-negatives, thus evidencing promising complementarity between urine and blood sampling for doping control, as highlighted in the case of the use of transdermal testosterone preparations. The generation in a multimodal setting of adaptive and personalized reference ranges opens up new opportunities in clinical and anti-doping profiling. The integration of multiple parameters in a longitudinal monitoring is expected to provide a more complete evaluation of individual profiles generating actionable intelligence to further guide sample collection, analysis protocols and decision-making in clinics and anti-doping.


Assuntos
Dopagem Esportivo , Detecção do Abuso de Substâncias , Humanos , Feminino , Teorema de Bayes , Detecção do Abuso de Substâncias/métodos , Testosterona/urina , Esteroides/urina , Biomarcadores
7.
J Breath Res ; 16(4)2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35961293

RESUMO

On-line breath analysis using secondary electrospray ionization coupled to high-resolution mass spectrometry (SESI-HRMS) is a sensitive method for biomarker discovery. The strengths of this technology have already been demonstrated in the clinical environment. For the first time, this study demonstrates the application of SESI-HRMS in the field of nutritional science using a standardized nutritional intervention, consisting of a high-energy shake (950 kcal, 8% protein, 35% sugar and 57% fat). Eleven subjects underwent the intervention on three separate days and their exhaled breath was monitored up to six hours postprandially. In addition, sampling was performed during equivalent fasting conditions for selected subjects. To estimate the impact of inter- and intra-individual variability, analysis of variance simultaneous component analysis was conducted, revealing that the inter-individual variability accounted for 30% of the data variation. To distinguish the effect of the intervention from fasting conditions, partial least squares discriminant analysis was performed. Candidate compound annotation was performed with pathway analysis and collision-induced dissociation (CID) experiments. Pathway analysis highlighted, among others, features associated with the metabolism of linoleate, butanoate and amino sugars. Tentative compounds annotated through CID measurements include fatty acids, amino acids, and amino acid derivatives, some of them likely derived from nutrients by the gut microbiome (e.g. propanoate, indoles), as well as organic acids from the Krebs cycle. Time-series clustering showed an overlap of observed kinetic trends with those reported previously in blood plasma.


Assuntos
Testes Respiratórios , Espectrometria de Massas por Ionização por Electrospray , Testes Respiratórios/métodos , Expiração , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos
8.
Forensic Sci Int ; 295: 8-18, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30553191

RESUMO

Recent research efforts in the domain of fire debris analysis have been mainly oriented towards the development of innovative analytical procedures and chemometric approaches for the detection and classification of ignitable liquids in fire specimens according to the ASTM E1618. However, less attention has been brought to the question of the source inference of ignitable liquids. Infer the identity of source of ignitable liquids recovered from arson sites is still a challenging and ongoing research area. In this study, the objective is to link neat gasoline samples sharing a common source through the use of an untargeted chemometric approach applied to data acquired by automated thermodesorption (ATD)-GC-MS following passive headspace extraction onto Tenax TA tubes. To that end, 190 unique gasoline samples from 19 gas stations collected over a year were used. A general and automated chemometric methodology for data treatment involving the following main steps is proposed: feature detection, normalization by exhaustive calculation of ratios between areas of pairs of features and selection of most discriminant ratios. The ratio selection procedure used here is based on the calculation of similarity measurements between pairs of samples sharing a common source or not. The algorithm maximizes the separation of the distributions of similarity measurements for related and unrelated samples by selecting a subset of ratios maximizing the area under the Receiver Operating Characteristics curve. The approach presented here was successfully applied to neat gasoline samples in order to assess if two gasoline samples share a common source or not.

9.
Forensic Sci Int ; 301: 190-201, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31174133

RESUMO

The source inference of ignitable liquids in forensic science is still a challenging and ongoing research area. In real case applications, specimens of different natures, which may have been exposed to fire or not, may have to be compared. These comparisons are difficult since specimens may have been altered by evaporation, combustion or both. Plus, the extent of the alteration is often difficult to evaluate. Most studies concerning source inference of ignitable liquids worked on neat samples or samples altered by evaporation. However, there is a lack of studies comparing the influence of evaporation and combustion within a source inference framework. In this study, the same collection of gasoline samples was altered by both evaporation under a nitrogen stream and combustion of the gasoline adsorbed on a matrix. The possibility to link gasoline samples sharing a common source was then explored using an adaptive untargeted chemometrics workflow from feature detection to feature selection. This data treatment approach was successfully applied to the data and it was shown that the possibility to link samples with a common source was not compromised despite evaporation or combustion for degrees of alteration from 0% to 99%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA