Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 209(3): 1220-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26428268

RESUMO

Plant pathogens adapt readily to new crop varieties in agrosystems, and it is crucial to understand the factors underlying the epidemic spread of new virulent strains if we are to develop more efficient strategies to control them. In this study we used multilocus microsatellite typing, molecular epidemiology tools and a large collection of isolates from cultivated, wild and ornamental apples to investigate the origin of new virulent populations of Venturia inaequalis, an ascomycete fungus causing apple scab on varieties carrying the Rvi6 resistance gene. We demonstrated a common origin at the European scale of populations infecting apples (Malus × domestica) carrying the Rvi6 resistance and Malus floribunda, the progenitor of the Rvi6 resistance. Demographic modeling indicated that the Rvi6-virulent lineage separated several thousands of years ago from populations infecting non-Rvi6 hosts, without detectable gene flow between the two lineages. These findings show that 'breakdowns' of plant resistance genes can be caused by the selection and migration of virulent genotypes from standing genetic variation maintained in environmental disease reservoirs, here ornamental crabapples. This work stresses the need to take better account of pathogen diversity in resistance screenings of breeding lines and in resistance deployment strategies, in order to enhance sustainable disease management.


Assuntos
Agricultura , Ascomicetos/patogenicidade , Reservatórios de Doenças/microbiologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/genética , Teorema de Bayes , Evolução Biológica , Análise Discriminante , Fluxo Gênico , Variação Genética , Haplótipos/genética , Repetições de Microssatélites/genética , Análise Multivariada , Mutação/genética , Análise de Componente Principal , Virulência
2.
G3 (Bethesda) ; 9(8): 2405-2414, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31253647

RESUMO

The Venturia genus comprises fungal species that are pathogens on Rosaceae host plants, including V. inaequalis and V. asperata on apple, V. aucupariae on sorbus and V. pirina on pear. Although the genetic structure of V. inaequalis populations has been investigated in detail, genomic features underlying these subdivisions remain poorly understood. Here, we report whole genome sequencing of 87 Venturia strains that represent each species and each population within V. inaequalis We present a PacBio genome assembly for the V. inaequalis EU-B04 reference isolate. The size of selected genomes was determined by flow cytometry, and varied from 45 to 93 Mb. Genome assemblies of V. inaequalis and V. aucupariae contain a high content of transposable elements (TEs), most of which belong to the Gypsy or Copia LTR superfamilies and have been inactivated by Repeat-Induced Point mutations. The reference assembly of V. inaequalis presents a mosaic structure of GC-equilibrated regions that mainly contain predicted genes and AT-rich regions, mainly composed of TEs. Six pairs of strains were identified as clones. Single-Nucleotide Polymorphism (SNP) analysis between these clones revealed a high number of SNPs that are mostly located in AT-rich regions due to misalignments and allowed determining a false discovery rate. The availability of these genome sequences is expected to stimulate genetics and population genomics research of Venturia pathogens. Especially, it will help understanding the evolutionary history of Venturia species that are pathogenic on different hosts, a history that has probably been substantially influenced by TEs.


Assuntos
Ascomicetos/genética , Genoma Fúngico , Genômica , Ascomicetos/classificação , Biologia Computacional/métodos , Genômica/métodos , Anotação de Sequência Molecular , Filogenia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
3.
PLoS One ; 10(6): e0122909, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26091067

RESUMO

Understanding evolutionary dynamics of pathogens during domestication of their hosts and rise of agro-ecosystems is essential for durable disease management. Here, we investigated changes in life-history traits of the fungal pathogen Venturia inaequalis during domestication of the apple. Life traits linked to fungal dispersal were compared between 60 strains that were sampled in domestic and wild habitats in Kazakhstan, the center of origin of both host and pathogen. Our two main findings are that transition from wild to agro-ecosystems was associated with an increase of both spore size and sporulation capacity; and that distribution of quantitative traits of the domestic population mostly overlapped with those of the wild population. Our results suggest that apple domestication had a considerable impact on fungal characters linked to its dispersal through selection from standing phenotypic diversity. We showed that pestification of V. inaequalis in orchards led to an enhanced allocation in colonization ability from standing variation in the wild area. This study emphasizes the potential threat that pathogenic fungal populations living in wild environments represent for durability of resistance in agro-ecosystems.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno , Característica Quantitativa Herdável , Ecossistema , Malus , Fenótipo , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA