Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS Biol ; 22(8): e3002723, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39172952

RESUMO

The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in nonhuman species and recently demonstrated to occur in rare instances from one human generation to the next. Here, we investigated numtogenesis dynamics in humans in 2 ways. First, we quantified Numts in 1,187 postmortem brain and blood samples from different individuals. Compared to circulating immune cells (n = 389), postmitotic brain tissue (n = 798) contained more Numts, consistent with their potential somatic accumulation. Within brain samples, we observed a 5.5-fold enrichment of somatic Numt insertions in the dorsolateral prefrontal cortex (DLPFC) compared to cerebellum samples, suggesting that brain Numts arose spontaneously during development or across the lifespan. Moreover, an increase in the number of brain Numts was linked to earlier mortality. The brains of individuals with no cognitive impairment (NCI) who died at younger ages carried approximately 2 more Numts per decade of life lost than those who lived longer. Second, we tested the dynamic transfer of Numts using a repeated-measures whole-genome sequencing design in a human fibroblast model that recapitulates several molecular hallmarks of aging. These longitudinal experiments revealed a gradual accumulation of 1 Numt every ~13 days. Numtogenesis was independent of large-scale genomic instability and unlikely driven by cell clonality. Targeted pharmacological perturbations including chronic glucocorticoid signaling or impairing mitochondrial oxidative phosphorylation (OxPhos) only modestly increased the rate of numtogenesis, whereas patient-derived SURF1-mutant cells exhibiting mtDNA instability accumulated Numts 4.7-fold faster than healthy donors. Combined, our data document spontaneous numtogenesis in human cells and demonstrate an association between brain cortical somatic Numts and human lifespan. These findings open the possibility that mito-nuclear horizontal gene transfer among human postmitotic tissues produces functionally relevant human Numts over timescales shorter than previously assumed.


Assuntos
Encéfalo , DNA Mitocondrial , Fibroblastos , Humanos , DNA Mitocondrial/genética , Fibroblastos/metabolismo , Encéfalo/metabolismo , Masculino , Feminino , Núcleo Celular/metabolismo , Pessoa de Meia-Idade , Adulto , Idoso , Longevidade/genética , Envelhecimento/fisiologia , Envelhecimento/genética
2.
Proc Natl Acad Sci U S A ; 121(27): e2317673121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38889126

RESUMO

Psychosocial experiences affect brain health and aging trajectories, but the molecular pathways underlying these associations remain unclear. Normal brain function relies on energy transformation by mitochondria oxidative phosphorylation (OxPhos). Two main lines of evidence position mitochondria both as targets and drivers of psychosocial experiences. On the one hand, chronic stress exposure and mood states may alter multiple aspects of mitochondrial biology; on the other hand, functional variations in mitochondrial OxPhos capacity may alter social behavior, stress reactivity, and mood. But are psychosocial exposures and subjective experiences linked to mitochondrial biology in the human brain? By combining longitudinal antemortem assessments of psychosocial factors with postmortem brain (dorsolateral prefrontal cortex) proteomics in older adults, we find that higher well-being is linked to greater abundance of the mitochondrial OxPhos machinery, whereas higher negative mood is linked to lower OxPhos protein content. Combined, positive and negative psychosocial factors explained 18 to 25% of the variance in the abundance of OxPhos complex I, the primary biochemical entry point that energizes brain mitochondria. Moreover, interrogating mitochondrial psychobiological associations in specific neuronal and nonneuronal brain cells with single-nucleus RNA sequencing (RNA-seq) revealed strong cell-type-specific associations for positive psychosocial experiences and mitochondria in glia but opposite associations in neurons. As a result, these "mind-mitochondria" associations were masked in bulk RNA-seq, highlighting the likely underestimation of true psychobiological effect sizes in bulk brain tissues. Thus, self-reported psychosocial experiences are linked to human brain mitochondrial phenotypes.


Assuntos
Encéfalo , Mitocôndrias , Fosforilação Oxidativa , Humanos , Mitocôndrias/metabolismo , Masculino , Feminino , Encéfalo/metabolismo , Idoso , Estresse Psicológico/metabolismo , Pessoa de Meia-Idade , Córtex Pré-Frontal/metabolismo , Neurônios/metabolismo , Proteômica/métodos , Afeto/fisiologia
3.
Hum Mol Genet ; 33(15): 1315-1327, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38679805

RESUMO

Late-Onset Alzheimer's Disease (LOAD) is a heterogeneous neurodegenerative disorder with complex etiology and high heritability. Its multifactorial risk profile and large portions of unexplained heritability suggest the involvement of yet unidentified genetic risk factors. Here we describe the "whole person" genetic risk landscape of polygenic risk scores for 2218 traits in 2044 elderly individuals and test if novel eigen-PRSs derived from clustered subnetworks of single-trait PRSs can improve the prediction of LOAD diagnosis, rates of cognitive decline, and canonical LOAD neuropathology. Network analyses revealed distinct clusters of PRSs with clinical and biological interpretability. Novel eigen-PRSs (ePRS) from these clusters significantly improved LOAD-related phenotypes prediction over current state-of-the-art LOAD PRS models. Notably, an ePRS representing clusters of traits related to cholesterol levels was able to improve variance explained in a model of the brain-wide beta-amyloid burden by 1.7% (likelihood ratio test P = 9.02 × 10-7). All associations of ePRS with LOAD phenotypes were eliminated by the removal of APOE-proximal loci. However, our association analysis identified modules characterized by PRSs of high cholesterol and LOAD. We believe this is due to the influence of the APOE region from both PRSs. We found significantly higher mean SNP effects for LOAD in the intersecting APOE region SNPs. Combining genetic risk factors for vascular traits and dementia could improve current single-trait PRS models of LOAD, enhancing the use of PRS in risk stratification. Our results are catalogued for the scientific community, to aid in generating new hypotheses based on our maps of clustered PRSs and associations with LOAD-related phenotypes.


Assuntos
Doença de Alzheimer , Estratificação de Risco Genético , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Apolipoproteínas E/genética , Disfunção Cognitiva/genética , Estudo de Associação Genômica Ampla , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
Hum Mol Genet ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39146503

RESUMO

CD2-Associated protein (CD2AP) is a candidate susceptibility gene for Alzheimer's disease, but its role in the mammalian central nervous system remains largely unknown. We show that CD2AP protein is broadly expressed in the adult mouse brain, including within cortical and hippocampal neurons, where it is detected at pre-synaptic terminals. Deletion of Cd2ap altered dendritic branching and spine density, and impaired ubiquitin-proteasome system activity. Moreover, in mice harboring either one or two copies of a germline Cd2ap null allele, we noted increased paired-pulse facilitation at hippocampal Schaffer-collateral synapses, consistent with a haploinsufficient requirement for pre-synaptic release. Whereas conditional Cd2ap knockout in the brain revealed no gross behavioral deficits in either 3.5- or 12-month-old mice, Cd2ap heterozygous mice demonstrated subtle impairments in discrimination learning using a touchscreen task. Based on unbiased proteomics, partial or complete loss of Cd2ap triggered perturbation of proteins with roles in protein folding, lipid metabolism, proteostasis, and synaptic function. Overall, our results reveal conserved, dose-sensitive requirements for CD2AP in the maintenance of neuronal structure and function, including synaptic homeostasis and plasticity, and inform our understanding of possible cell-type specific mechanisms in Alzheimer's Disease.

5.
Acta Neuropathol ; 147(1): 107, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918213

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, and disease mechanisms are still not fully understood. Here, we explored pathological changes in human induced pluripotent stem cell (iPSC)-derived neurons carrying the familial AD APPV717I mutation after cell injection into the mouse forebrain. APPV717I mutant iPSCs and isogenic controls were differentiated into neurons revealing enhanced Aß42 production, elevated phospho-tau, and impaired neurite outgrowth in APPV717I neurons. Two months after transplantation, APPV717I and control neural cells showed robust engraftment but at 12 months post-injection, APPV717I grafts were smaller and demonstrated impaired neurite outgrowth compared to controls, while plaque and tangle pathology were not seen. Single-nucleus RNA-sequencing of micro-dissected grafts, performed 2 months after cell injection, identified significantly altered transcriptome signatures in APPV717I iPSC-derived neurons pointing towards dysregulated synaptic function and axon guidance. Interestingly, APPV717I neurons showed an increased expression of genes, many of which are also upregulated in postmortem neurons of AD patients including the transmembrane protein LINGO2. Downregulation of LINGO2 in cultured APPV717I neurons rescued neurite outgrowth deficits and reversed key AD-associated transcriptional changes related but not limited to synaptic function, apoptosis and cellular senescence. These results provide important insights into transcriptional dysregulation in xenografted APPV717I neurons linked to synaptic function, and they indicate that LINGO2 may represent a potential therapeutic target in AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Células-Tronco Pluripotentes Induzidas , Neurônios , Transcriptoma , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Animais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Mutação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sinapses/patologia , Sinapses/metabolismo , Peptídeos beta-Amiloides/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
6.
Alzheimers Dement ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129336

RESUMO

INTRODUCTION: Dietary patterns are associated with dementia risk, but the underlying molecular mechanisms are largely unknown. METHODS: We used RNA sequencing data from post mortem prefrontal cortex tissue and annual cognitive evaluations from 1204 participants in the Religious Orders Study and Memory and Aging Project. We identified a transcriptomic profile correlated with the MIND diet (Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay) among 482 individuals who completed ante mortem food frequency questionnaires; and examined its associations with cognitive health in the remaining 722 participants. RESULTS: We identified a transcriptomic profile, consisting of 50 genes, correlated with the MIND diet score (p = 0.001). Each standard deviation increase in the transcriptomic profile score was associated with a slower annual rate of decline in global cognition (ß = 0.011, p = 0.003) and lower odds of dementia (odds ratio = 0.76, p = 0.0002). Expressions of several genes (including TCIM and IGSF5) appeared to mediate the association between MIND diet and dementia. DISCUSSION: A brain transcriptomic profile for healthy diets revealed novel genes potentially associated with cognitive health. HIGHLIGHTS: Why healthy dietary patterns are associated with lower dementia risk are unknown. We integrated dietary, brain transcriptomic, and cognitive data in older adults. Mediterranean-Dietary Approaches to Stop Hypertension Intervention for Neurodegenerative Delay (MIND) diet intake is correlated with a specific brain transcriptomic profile. This brain transcriptomic profile score is associated with better cognitive health. More data are needed to elucidate the causality and functionality of identified genes.

7.
Alzheimers Dement ; 20(5): 3290-3304, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38511601

RESUMO

INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.


Assuntos
Doença de Alzheimer , Estudo de Associação Genômica Ampla , Sequenciamento Completo do Genoma , Humanos , Doença de Alzheimer/genética , Feminino , Masculino , Predisposição Genética para Doença/genética , Idoso , Polimorfismo de Nucleotídeo Único/genética , Variação Genética/genética
8.
Alzheimers Dement ; 20(4): 2952-2967, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38470006

RESUMO

BACKGROUND: Impairment of the ubiquitin-proteasome system (UPS) has been implicated in abnormal protein accumulation in Alzheimer's disease. It remains unclear if genetic variation affects the intrinsic properties of neurons that render some individuals more vulnerable to UPS impairment. METHODS: Induced pluripotent stem cell (iPSC)-derived neurons were generated from over 50 genetically variant and highly characterized participants of cohorts of aging. Proteomic profiling, proteasome activity assays, and Western blotting were employed to examine neurons at baseline and in response to UPS perturbation. RESULTS: Neurons with lower basal UPS activity were more vulnerable to tau accumulation following mild UPS inhibition. Chronic reduction in proteasome activity in human neurons induced compensatory elevation of regulatory proteins involved in proteostasis and several proteasome subunits. DISCUSSION: These findings reveal that genetic variation influences basal UPS activity in human neurons and differentially sensitizes them to external factors perturbing the UPS, leading to the accumulation of aggregation-prone proteins such as tau. HIGHLIGHTS: Polygenic risk score for AD is associated with the ubiquitin-proteasome system (UPS) in neurons. Basal proteasome activity correlates with aggregation-prone protein levels in neurons. Genetic variation affects the response to proteasome inhibition in neurons. Neuronal proteasome perturbation induces an elevation in specific proteins involved in proteostasis. Low basal proteasome activity leads to enhanced tau accumulation with UPS challenge.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteostase , Proteômica , Neurônios/metabolismo
9.
JMIR Public Health Surveill ; 10: e45429, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319703

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has negatively affected the social fabric. OBJECTIVE: We evaluated the associations between personal social networks and neurological function in people with multiple sclerosis (pwMS) and controls in the prepandemic and pandemic periods. METHODS: During the early pandemic (March-December 2020), 8 cohorts of pwMS and controls completed a questionnaire quantifying the structure and composition of their personal social networks, including the health behaviors of network members. Participants from 3 of the 8 cohorts had additionally completed the questionnaire before the pandemic (2017-2019). We assessed neurological function using 3 interrelated patient-reported outcomes: Patient Determined Disease Steps (PDDS), Multiple Sclerosis Rating Scale-Revised (MSRS-R), and Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function. We identified the network features associated with neurological function using paired 2-tailed t tests and covariate-adjusted regressions. RESULTS: In the cross-sectional analysis of the pandemic data from 1130 pwMS and 1250 controls during the pandemic, having a higher percentage of network members with a perceived negative health influence was associated with worse disability in pwMS (MSRS-R: ß=2.181, 95% CI 1.082-3.279; P<.001) and poor physical function in controls (PROMIS Physical Function: ß=-5.707, 95% CI -7.405 to -4.010; P<.001). In the longitudinal analysis of 230 pwMS and 136 controls, the networks of all participants contracted, given an increase in constraint (pwMS-prepandemic: mean 52.24, SD 15.81; pwMS-pandemic: mean 56.77, SD 18.91; P=.006. Controls-prepandemic: mean 48.07, SD 13.36; controls-pandemic: mean 53.99, SD 16.31; P=.001) and a decrease in network size (pwMS-prepandemic: mean 8.02, SD 5.70; pwMS-pandemic: mean 6.63, SD 4.16; P=.003. Controls-prepandemic: mean 8.18, SD 4.05; controls-pandemic: mean 6.44, SD 3.92; P<.001), effective size (pwMS-prepandemic: mean 3.30, SD 1.59; pwMS-pandemic: mean 2.90, SD 1.50; P=.007. Controls-prepandemic: mean 3.85, SD 1.56; controls-pandemic: mean 3.40, SD 1.55; P=.01), and maximum degree (pwMS-prepandemic: mean 4.78, SD 1.86; pwMS-pandemic: mean 4.32, SD 1.92; P=.01. Controls-prepandemic: mean 5.38, SD 1.94; controls-pandemic: mean 4.55, SD 2.06; P<.001). These network changes were not associated with worsening function. The percentage of kin in the networks of pwMS increased (mean 46.06%, SD 29.34% to mean 54.36%, SD 30.16%; P=.003) during the pandemic, a change that was not seen in controls. CONCLUSIONS: Our findings suggest that high perceived negative health influence in the network was associated with worse function in all participants during the pandemic. The networks of all participants became tighter knit, and the percentage of kin in the networks of pwMS increased during the pandemic. Despite these perturbations in social connections, network changes from the prepandemic to the pandemic period were not associated with worsening function in all participants, suggesting possible resilience.


Assuntos
COVID-19 , Esclerose Múltipla , Fenilenodiaminas , Humanos , COVID-19/epidemiologia , Estudos de Casos e Controles , Estudos Transversais , Esclerose Múltipla/epidemiologia , Pandemias
10.
bioRxiv ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38826287

RESUMO

The cell-type specific role of the vascular endothelial growth factors (VEGFs) in the pathogenesis of Alzheimer's disease (AD) is not well characterized. In this study, we utilized a single-nucleus RNA sequencing dataset from Dorsolateral Prefrontal Cortex (DLFPC) of 424 donors from the Religious Orders Study and Memory and Aging Project (ROS/MAP) to investigate the effect of 10 VEGF genes ( VEGFA, VEGFB, VEGFC, VEGFD, PGF, FLT1, FLT4, KDR, NRP1 , and NRP2 ) on AD endophenotypes. Mean age of death was 89 years, among which 68% were females, and 52% has AD dementia. Negative binomial mixed models were used for differential expression analysis and for association analysis with ß-amyloid load, PHF tau tangle density, and both cross-sectional and longitudinal global cognitive function. Intercellular VEGF-associated signaling was profiled using CellChat. We discovered prefrontal cortical FLT1 expression was upregulated in AD brains in both endothelial and microglial cells. Higher FLT1 expression was also associated with worse cross-sectional global cognitive function, longitudinal cognitive trajectories, and ß-amyloid load. Similarly, higher endothelial FLT4 expression was associated with more ß-amyloid load. In contrast to the receptors, VEGFB showed opposing effects on ß-amyloid load whereby higher levels in oligodendrocytes was associated with high amyloid burden, while higher levels in inhibitory neurons was associated with lower amyloid burden. Finally, AD cells showed significant reduction in overall VEGF signaling comparing to those from cognitive normal participants. Our results highlight key changes in VEGF receptor expression in endothelial and microglial cells during AD, and the potential protective role of VEGFB in neurons.

11.
Mult Scler Relat Disord ; 89: 105762, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047340

RESUMO

BACKGROUND: Dietary supplements can modulate the gut microbial ecosystem and affect the immune system. This has potential implications for autoimmune diseases, including multiple sclerosis (MS). Prior studies explored tolerability, symptomatic improvement, and immunologic effects of probiotics in people with MS (pwMS), but no study has examined prebiotics in this population or compared prebiotics with probiotics. METHODS: This is a randomized, open-label trial of participants with relapsing-remitting MS on B-cell depletion therapy from two MS centers. 22 participants enrolled in the original cross-over study in which probiotic (Visbiome, containing Lactobacillus, Bifidobacterium and Streptococcus species) or prebiotic (Prebiotin, containing oligofructose enriched inulin) supplementation for 6 weeks was randomized, each followed by a washout period. Due to pandemic-related interruptions and expiration of the study supply of probiotics, another 15 participants enrolled in a single-arm study to receive prebiotic supplementation for 6 weeks followed by a washout period. We assessed supplement tolerability and patient-reported outcomes (PRO) relevant to MS (disability, fatigue, mood, and bowel symptoms) before and after each supplement administration period and each washout period. We bio-archived plasma, serum, peripheral blood mononuclear cells and stool samples at each timepoint for future multi-omic assessment. RESULTS: Prebiotics and probiotics had comparable adherence rates and both supplements were well tolerated in pwMS. Participants on either supplement reported minor adverse events, most of which were mild and self-limited. There was a subjective preference for prebiotics over probiotics. Comparing supplement-associated changes in PRO scores from baseline to 6 weeks post-supplementation, there were significant difference between prebiotics and probiotics for the change in patient-reported global symptom burden (MSRS-R Total) and bowel control (BWCS), but only probiotics statistically improved bowel control from baseline to post-supplementation. CONCLUSION: Supplementation with either prebiotics or probiotics is reasonably well-tolerated and safe. Probiotics improved bowel control, but did not improve other PROs in a 6-week time frame. These data regarding feasibility, tolerability, adherence, and adverse events of supplements will inform future clinical trial designs to definitively compare the efficacy and safety of prebiotics and probiotics. The biological data that will be generated from this study in the future will provide mechanistic insights into the effects of these dietary supplements on MS pathophysiology.


Assuntos
Estudos Cross-Over , Estudos de Viabilidade , Esclerose Múltipla Recidivante-Remitente , Prebióticos , Probióticos , Humanos , Probióticos/administração & dosagem , Probióticos/efeitos adversos , Prebióticos/administração & dosagem , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/terapia , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Suplementos Nutricionais , Medidas de Resultados Relatados pelo Paciente
12.
Mult Scler Relat Disord ; 82: 105387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134606

RESUMO

B-cell depleting therapies are effective in multiple sclerosis (MS) and are widely used (Hauser et al., 2017). Inflammatory vaginitis (IV), characterized by unexplained vaginal symptoms including mucopurulent discharge, pain, irritation, and dyspareunia, has been reported in one MS patient on ocrelizumab (Filikci and Jensen, 2022), and to be present in 3.5 % of women on rituximab for autoimmune diseases (Yockey et al., 2021). We report here four cases of IV in B cell depleted women with MS. B-cell reconstitution was temporally associated with improvement of IV symptoms. Further investigation and vigilance for this potential treatment emergent adverse event affecting sexual and reproductive health of women with MS is needed.


Assuntos
Esclerose Múltipla , Vaginite , Feminino , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/tratamento farmacológico , Vaginite/tratamento farmacológico , Vaginite/diagnóstico , Rituximab
13.
Neurobiol Aging ; 137: 1-7, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38394722

RESUMO

In a recent proteome-wide study, we identified several candidate proteins for drug discovery whose cortical abundance was associated with cognitive resilience to late-life brain pathologies. This study examines the extent to which these proteins are associated with the brain structures of cognitive resilience in decedents from the Religious Orders Study and Memory and Aging Project. Six proteins were associated with brain morphometric characteristics related to higher resilience (i.e., larger anterior and medial temporal lobe volumes), and five were associated with morphometric characteristics related to lower resilience (i.e., enlarged ventricles). Two synaptic proteins, RPH3A and CPLX1, remained inversely associated with the lower resilience signature, after further controlling for 10 neuropathologic indices. These findings suggest preserved brain structure in periventricular regions as a potential mechanism by which RPH3A and CPLX1 are associated with cognitive resilience. Further work is needed to elucidate other mechanisms by which targeting these proteins can circumvent the effects of pathology on individuals at risk for cognitive decline.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Resiliência Psicológica , Humanos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/patologia , Cognição
14.
bioRxiv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38826204

RESUMO

Prenatal infections and activation of the maternal immune system have been proposed to contribute to causing neurodevelopmental disorders (NDDs), chronic conditions often linked to brain abnormalities. Microglia are the resident immune cells of the brain and play a key role in neurodevelopment. Disruption of microglial functions can lead to brain abnormalities and increase the risk of developing NDDs. How the maternal as well as the fetal immune system affect human neurodevelopment and contribute to NDDs remains unclear. An important reason for this knowledge gap is the fact that the impact of exposure to prenatal risk factors has been challenging to study in the human context. Here, we characterized a model of cerebral organoids (CO) with integrated microglia (COiMg). These organoids express typical microglial markers and respond to inflammatory stimuli. The presence of microglia influences cerebral organoid development, including cell density and neural differentiation, and regulates the expression of several ciliated mesenchymal cell markers. Moreover, COiMg and organoids without microglia show similar but also distinct responses to inflammatory stimuli. Additionally, IFN-γ induced significant transcriptional and structural changes in the cerebral organoids, that appear to be regulated by the presence of microglia. Specifically, interferon-gamma (IFN-γ) was found to alter the expression of genes linked to autism. This model provides a valuable tool to study how inflammatory perturbations and microglial presence affect neurodevelopmental processes.

15.
Biol Psychiatry ; 96(1): 34-43, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38141910

RESUMO

BACKGROUND: Depression, a common psychiatric illness and global public health problem, remains poorly understood across different life stages, which hampers the development of novel treatments. METHODS: To identify new candidate genes for therapeutic development, we performed differential gene expression analysis of single-nucleus RNA sequencing data from the dorsolateral prefrontal cortex of older adults (n = 424) in relation to antemortem depressive symptoms. Additionally, we integrated genome-wide association study results for depression (n = 500,199) along with genetic tools for inferring the expression of 14,048 unique genes in 7 cell types and 52 cell subtypes to perform a transcriptome-wide association study of depression followed by Mendelian randomization. RESULTS: Our single-nucleus transcriptome-wide association study analysis identified 68 candidate genes for depression and showed the greatest number being in excitatory and inhibitory neurons. Of the 68 genes, 53 were novel compared to previous studies. Notably, gene expression in different neuronal subtypes had varying effects on depression risk. Traits with high genetic correlations with depression, such as neuroticism, shared more transcriptome-wide association study genes than traits that were not highly correlated with depression. Complementing these analyses, differential gene expression analysis across 52 neocortical cell subtypes showed that genes such as KCNN2, SCAI, WASF3, and SOCS6 were associated with late-life depressive symptoms in specific cell subtypes. CONCLUSIONS: These 2 sets of analyses illustrate the utility of large single-nucleus RNA sequencing data both to uncover genes whose expression is altered in specific cell subtypes in the context of depressive symptoms and to enhance the interpretation of well-powered genome-wide association studies so that we can prioritize specific susceptibility genes for further analysis and therapeutic development.


Assuntos
Estudo de Associação Genômica Ampla , Transcriptoma , Humanos , Masculino , Feminino , Idoso , Depressão/genética , Córtex Pré-Frontal Dorsolateral , Predisposição Genética para Doença/genética , Pessoa de Meia-Idade , Análise da Randomização Mendeliana , Neurônios/metabolismo
16.
Commun Biol ; 7(1): 569, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750228

RESUMO

Accumulation of amyloid-ß (Aß) and tau tangles are hallmarks of Alzheimer's disease. Aß is extracellular while tau tangles are typically intracellular, and it is unknown how these two proteinopathies are connected. Here, we use data of 1206 elders and test that RNA expression levels of GPER1, a transmembrane protein, modify the association of Aß with tau tangles. GPER1 RNA expression is related to more tau tangles (p = 0.001). Moreover, GPER1 expression modifies the association of immunohistochemistry-derived Aß load with tau tangles (p = 0.044). Similarly, GPER1 expression modifies the association between Aß proteoforms and tau tangles: total Aß protein (p = 0.030) and Aß38 peptide (p = 0.002). Using single nuclei RNA-seq indicates that GPER1 RNA expression in astrocytes modifies the relation of Aß load with tau tangles (p = 0.002), but not GPER1 in excitatory neurons or endothelial cells. We conclude that GPER1 may be a link between Aß and tau tangles driven mainly by astrocytic GPER1 expression.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Proteínas tau , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Astrócitos/metabolismo , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas tau/metabolismo , Proteínas tau/genética
17.
Nat Commun ; 15(1): 6646, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103319

RESUMO

Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression methods could be used for training gene expression imputation models for transcriptome-wide association studies (TWAS). To leverage expression imputation models (i.e., base models) trained with multiple reference panels, regression methods, and tissues, we develop a Stacked Regression based TWAS (SR-TWAS) tool which can obtain optimal linear combinations of base models for a given validation transcriptomic dataset. Both simulation and real studies show that SR-TWAS improves power, due to increased training sample sizes and borrowed strength across multiple regression methods and tissues. Leveraging base models across multiple reference panels, tissues, and regression methods, our real studies identify 6 independent significant risk genes for Alzheimer's disease (AD) dementia for supplementary motor area tissue and 9 independent significant risk genes for Parkinson's disease (PD) for substantia nigra tissue. Relevant biological interpretations are found for these significant risk genes.


Assuntos
Doença de Alzheimer , Estudo de Associação Genômica Ampla , Aprendizado de Máquina , Doença de Parkinson , Transcriptoma , Humanos , Doença de Alzheimer/genética , Doença de Parkinson/genética , Estudo de Associação Genômica Ampla/métodos , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença , Substância Negra/metabolismo , Demência/genética
18.
Transl Psychiatry ; 14(1): 83, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331937

RESUMO

Changes in high-affinity nicotinic acetylcholine receptors are intricately connected to neuropathology in Alzheimer's Disease (AD). Protective and cognitive-enhancing roles for the nicotinic α5 subunit have been identified, but this gene has not been closely examined in the context of human aging and dementia. Therefore, we investigate the nicotinic α5 gene CHRNA5 and the impact of relevant single nucleotide polymorphisms (SNPs) in prefrontal cortex from 922 individuals with matched genotypic and post-mortem RNA sequencing in the Religious Orders Study and Memory and Aging Project (ROS/MAP). We find that a genotype robustly linked to increased expression of CHRNA5 (rs1979905A2) predicts significantly reduced cortical ß-amyloid load. Intriguingly, co-expression analysis suggests CHRNA5 has a distinct cellular expression profile compared to other nicotinic receptor genes. Consistent with this prediction, single nucleus RNA sequencing from 22 individuals reveals CHRNA5 expression is disproportionately elevated in chandelier neurons, a distinct subtype of inhibitory neuron known for its role in excitatory/inhibitory (E/I) balance. We show that chandelier neurons are enriched in amyloid-binding proteins compared to basket cells, the other major subtype of PVALB-positive interneurons. Consistent with the hypothesis that nicotinic receptors in chandelier cells normally protect against ß-amyloid, cell-type proportion analysis from 549 individuals reveals these neurons show amyloid-associated vulnerability only in individuals with impaired function/trafficking of nicotinic α5-containing receptors due to homozygosity of the missense CHRNA5 SNP (rs16969968A2). Taken together, these findings suggest that CHRNA5 and its nicotinic α5 subunit exert a neuroprotective role in aging and Alzheimer's disease centered on chandelier interneurons.


Assuntos
Doença de Alzheimer , Receptores Nicotínicos , Humanos , Doença de Alzheimer/metabolismo , Receptores Nicotínicos/genética , Nicotina/farmacologia , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Envelhecimento/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
19.
medRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38313266

RESUMO

Impaired glucose uptake in the brain is one of the earliest presymptomatic manifestations of Alzheimer's disease (AD). The absence of symptoms for extended periods of time suggests that compensatory metabolic mechanisms can provide resilience. Here, we introduce the concept of a systemic 'bioenergetic capacity' as the innate ability to maintain energy homeostasis under pathological conditions, potentially serving as such a compensatory mechanism. We argue that fasting blood acylcarnitine profiles provide an approximate peripheral measure for this capacity that mirrors bioenergetic dysregulation in the brain. Using unsupervised subgroup identification, we show that fasting serum acylcarnitine profiles of participants from the AD Neuroimaging Initiative yields bioenergetically distinct subgroups with significant differences in AD biomarker profiles and cognitive function. To assess the potential clinical relevance of this finding, we examined factors that may offer diagnostic and therapeutic opportunities. First, we identified a genotype affecting the bioenergetic capacity which was linked to succinylcarnitine metabolism and significantly modulated the rate of future cognitive decline. Second, a potentially modifiable influence of beta-oxidation efficiency seemed to decelerate bioenergetic aging and disease progression. Our findings, which are supported by data from more than 9,000 individuals, suggest that interventions tailored to enhance energetic health and to slow bioenergetic aging could mitigate the risk of symptomatic AD, especially in individuals with specific mitochondrial genotypes.

20.
Nat Commun ; 15(1): 5815, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987616

RESUMO

The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.


Assuntos
Doença de Alzheimer , Análise de Célula Única , Transcriptoma , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Masculino , Feminino , Idoso , Microglia/metabolismo , Idoso de 80 Anos ou mais , Oligodendroglia/metabolismo , Pessoa de Meia-Idade , Imunoglobulina G/metabolismo , Redes Reguladoras de Genes , Análise de Sequência de RNA , Encéfalo/metabolismo , Encéfalo/patologia , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA