Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 608(7924): 712-718, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002487

RESUMO

Liquids with permanent microporosity can absorb larger quantities of gas molecules than conventional solvents1, providing new opportunities for liquid-phase gas storage, transport and reactivity. Current approaches to designing porous liquids rely on sterically bulky solvent molecules or surface ligands and, thus, are not amenable to many important solvents, including water2-4. Here we report a generalizable thermodynamic strategy to preserve permanent microporosity and impart high gas solubilities to liquid water. Specifically, we show how the external and internal surface chemistry of microporous zeolite and metal-organic framework (MOF) nanocrystals can be tailored to promote the formation of stable dispersions in water while maintaining dry networks of micropores that are accessible to gas molecules. As a result of their permanent microporosity, these aqueous fluids can concentrate gases, including oxygen (O2) and carbon dioxide (CO2), to much higher densities than are found in typical aqueous environments. When these fluids are oxygenated, record-high capacities of O2 can be delivered to hypoxic red blood cells, highlighting one potential application of this new class of microporous liquids for physiological gas transport.

2.
Proc Natl Acad Sci U S A ; 121(6): e2316537121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289958

RESUMO

Electrostatic forces in solutions are highly relevant to a variety of fields, ranging from electrochemical energy storage to biology. However, their manifestation in concentrated electrolytes is not fully understood, as exemplified by counterintuitive observations of colloidal stability and long-ranged repulsions in molten salts. Highly charged biomolecules, such as DNA, respond sensitively to ions in dilute solutions. Here, we use non-base-pairing DNA-coated nanoparticles (DNA-NP) to analyze electrostatic interactions in concentrated salt solutions. Despite their negative charge, these conjugates form colloidal crystals in solutions of sufficient divalent cation concentration. We utilize small-angle X-ray scattering (SAXS) to study such DNA-NP assemblies across the full accessible concentration ranges of aqueous CaCl2, MgCl2, and SrCl2 solutions. SAXS shows that the crystallinity and phases of the assembled structures vary with cation type. For all tested salts, the aggregates contract with added ions at low salinities and then begin expanding above a cation-dependent threshold salt concentration. Wide-angle X-ray scattering (WAXS) reveals enhanced positional correlations between ions in the solution at high salt concentrations. Complementary molecular dynamics simulations show that these ion-ion interactions reduce the favorability of dense ion configurations within the DNA brushes below that of the bulk solution. Measurements in solutions with lowered permittivity demonstrate a simultaneous increase in ion coupling and decrease in the concentration at which aggregate expansion begins, thus confirming the connection between these phenomena. Our work demonstrates that interactions between charged objects continue to evolve considerably into the high-concentration regime, where classical theories project electrostatics to be of negligible consequence.

3.
Nature ; 577(7789): 216-220, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915399

RESUMO

Precise protein sequencing and folding are believed to generate the structure and chemical diversity of natural channels1,2, both of which are essential to synthetically achieve proton transport performance comparable to that seen in natural systems. Geometrically defined channels have been fabricated using peptides, DNAs, carbon nanotubes, sequence-defined polymers and organic frameworks3-13. However, none of these channels rivals the performance observed in their natural counterparts. Here we show that without forming an atomically structured channel, four-monomer-based random heteropolymers (RHPs)14 can mimic membrane proteins and exhibit selective proton transport across lipid bilayers at a rate similar to those of natural proton channels. Statistical control over the monomer distribution in an RHP leads to segmental heterogeneity in hydrophobicity, which facilitates the insertion of single RHPs into the lipid bilayers. It also results in bilayer-spanning segments containing polar monomers that promote the formation of hydrogen-bonded chains15,16 for proton transport. Our study demonstrates the importance of the adaptability that is enabled by statistical similarity among RHP chains and of the modularity provided by the chemical diversity of monomers, to achieve uniform behaviour in heterogeneous systems. Our results also validate statistical randomness as an unexplored approach to realize protein-like behaviour at the single-polymer-chain level in a predictable manner.


Assuntos
Lipídeos/química , Prótons , Bicamadas Lipídicas , Modelos Moleculares , Conformação Molecular , Polímeros
4.
Proc Natl Acad Sci U S A ; 120(15): e2300257120, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37018200

RESUMO

Nanoparticles with highly asymmetric sizes and charges that self-assemble into crystals via electrostatics may exhibit behaviors reminiscent of those of metals or superionic materials. Here, we use coarse-grained molecular simulations with underdamped Langevin dynamics to explore how a binary charged colloidal crystal reacts to an external electric field. As the field strength increases, we find transitions from insulator (ionic state), to superionic (conductive state), to laning, to complete melting (liquid state). In the superionic state, the resistivity decreases with increasing temperature, which is contrary to metals, yet the increment decreases as the electric field becomes stronger. Additionally, we verify that the dissipation of the system and the fluctuation of charge currents obey recently developed thermodynamic uncertainty relation. Our results describe charge transport mechanisms in colloidal superionic conductors.

5.
Proc Natl Acad Sci U S A ; 119(13): e2119509119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312375

RESUMO

SignificanceThe use of biological enzyme catalysts could have huge ramifications for chemical industries. However, these enzymes are often inactive in nonbiological conditions, such as high temperatures, present in industrial settings. Here, we show that the enzyme PETase (polyethylene terephthalate [PET]), with potential application in plastic recycling, is stabilized at elevated temperature through complexation with random copolymers. We demonstrate this through simulations and experiments on different types of substrates. Our simulations also provide strategies for designing more enzymatically active complexes by altering polymer composition and enzyme charge distribution.


Assuntos
Hidrolases , Polímeros , Complexos Multienzimáticos , Plásticos , Polietilenotereftalatos/química , Reciclagem
6.
J Am Chem Soc ; 146(22): 14959-14971, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781575

RESUMO

Elicitation of effective antitumor immunity following cancer vaccination requires the selective activation of distinct effector cell populations and pathways. Here we report a therapeutic approach for generating potent T cell responses using a modular vaccination platform technology capable of inducing directed immune activation, termed the Protein-like Polymer (PLP). PLPs demonstrate increased proteolytic resistance, high uptake by antigen-presenting cells (APCs), and enhanced payload-specific T cell responses. Key design parameters, namely payload linkage chemistry, degree of polymerization, and side chain composition, were varied to optimize vaccine formulations. Linking antigens to the polymer backbone using an intracellularly cleaved disulfide bond copolymerized with a diluent amount of oligo(ethylene glycol) (OEG) resulted in the highest payload-specific potentiation of antigen immunogenicity, enhancing dendritic cell (DC) activation and antigen-specific T cell responses. Vaccination with PLPs carrying either gp100, E7, or adpgk peptides significantly increased the survival of mice inoculated with B16F10, TC-1, or MC38 tumors, respectively, without the need for adjuvants. B16F10-bearing mice immunized with gp100-carrying PLPs showed increased antitumor CD8+ T cell immunity, suppressed tumor growth, and treatment synergy when paired with two distinct stimulator of interferon gene (STING) agonists. In a human papillomavirus-associated TC-1 model, combination therapy with PLP and 2'3'-cGAMP resulted in 40% of mice completely eliminating implanted tumors while also displaying curative protection from rechallenge, consistent with conferment of lasting immunological memory. Finally, PLPs can be stored long-term in a lyophilized state and are highly tunable, underscoring the unique properties of the platform for use as generalizable cancer vaccines.


Assuntos
Vacinas Anticâncer , Polímeros , Linfócitos T , Animais , Camundongos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Polímeros/química , Polímeros/farmacologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Humanos , Linhagem Celular Tumoral
7.
J Am Chem Soc ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073091

RESUMO

In reticular chemistry, molecular building blocks are designed to create crystalline open frameworks. A key principle of reticular chemistry is that the most symmetrical networks are the likely outcomes of reactions, particularly when highly symmetrical building blocks are involved. The strategy of synthesizing low-dimensional networks aims to reduce explicitly the symmetry of the molecular building blocks. Here we report the spontaneous formation of hydrogen-bonded fibrous structures from trigonal prismatic building blocks, which were designed to form three-dimensional crystalline networks on account of their highly symmetrical structures. Utilizing different microscopic and spectroscopic techniques, we identify the structures at the early stages of the assembly process in order to and understand the growth mechanism. The symmetrical molecular building blocks are incorporated preferentially in the longitudinal direction, giving rise to anisotropic hydrogen-bonded porous organic nanotubes. Entropy-driven anisotropic growth provides micrometer-scale unidirectional nanotubes with high porosity. By combining experimental evidence and theoretical modeling, we have obtained a deep understanding of the nucleation and growth processes. Our findings offer fundamental insight into the molecular design of tubular structures. The nanotubes evolve further in the transverse directions to provide extended higher-order fibrous structures [nano- and microfibers], ultimately leading to large-scale interconnected hydrogen-bonded fiber-like structures with twists and turns. Our work provides fundamental understanding and paves the way for innovative molecular designs in low-dimensional networks.

8.
Faraday Discuss ; 249(0): 408-423, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-37791509

RESUMO

Colloidal crystals have applications in water treatments, including water purification and desalination technologies. It is, therefore, important to understand the interactions between colloids as a function of electrolyte concentration. We study the assembly of DNA-grafted gold nanoparticles immersed in concentrated electrolyte solutions. Increasing the concentration of divalent Ca2+ ions leads to the condensation of nanoparticles into face-centered-cubic (FCC) crystals at low electrolyte concentrations. As the electrolyte concentration increases, the system undergoes a phase change to body-centered-cubic (BCC) crystals. This phase change occurs as the interparticle distance decreases. Molecular dynamics analysis suggests that the interparticle interactions change from strongly repulsive to short-range attractive as the divalent-electrolyte concentration increases. A thermodynamic analysis suggests that increasing the salt concentration leads to significant dehydration of the nanoparticle environment. We conjecture that the intercolloid attractive interactions and dehydrated states favour the BCC structure. Our results gain insight into salting out of colloids such as proteins as the concentration of salt increases in the solution.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Coloides/química , DNA/química , Eletrólitos/química , Ouro/química , Nanopartículas/química , Cálcio/química
9.
Soft Matter ; 20(9): 2151-2161, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38351846

RESUMO

The interaction between passive and active/driven particles has introduced a new way to control colloidal suspension properties from particle aggregation to crystallization. Here, we focus on the hydrodynamic interaction between a single rotational driven particle and a suspension of passive particles near the floor. Using experiments and Stokesian dynamics simulations that account for near-field lubrication, we demonstrate that the flow induced by the driven particle can induce long-ranged rearrangement in a passive suspension. We observe an accumulation of passive particles in front of the driven particle and a depletion of passive particles behind the driven particle. This restructuring generates a pattern that can span a range more than 10 times the driven particles radius. We further show that size scale of the pattern is only a function of the particles height above the floor.

10.
Soft Matter ; 20(23): 4640-4647, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38819791

RESUMO

Peptide amphiphiles (PAs) self-assemble into cylindrical nanofibers with applications in protein purification, tissue engineering, and regenerative medicine. For these applications, functionalized PAs are often co-assembled with oppositely charged filler PAs. Finding the conditions at which these fibers are homogeneously mixed or segregated is crucial for the required application. We co-assemble negative C12VVEE fillers and positive C12VVKK-OEG4-Z33 ligands, which are important for antibody purifications. Our results show that the ligands tend to cluster and locally segregate in the fiber surfaces. The Z33s are overall neutral and form large aggregates in bulk solution due to short range attractions. However, full segregation of the C12VVKK-OEG4-Z33 is not observed in the cylindrical surface due to the electrostatic penalty of forming large domains of similarly charged molecules. This is commensurate with previous theoretical predictions, showing that the competition between short-range attractive interactions and long-range electrostatic repulsions leads to pattern formation in cylindrical surfaces. This work offers valuable insight into the design of functionalized nanofibers for various biomedical and chemical applications.


Assuntos
Nanofibras , Peptídeos , Nanofibras/química , Peptídeos/química , Ligantes , Eletricidade Estática , Tensoativos/química
11.
Nature ; 617(7961): 467-468, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198306
12.
J Chem Phys ; 160(9)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38426520

RESUMO

Dielectric interfaces are crucial to the behavior of charged membranes, from graphene to synthetic and biological lipid bilayers. Understanding electrolyte behavior near these interfaces remains a challenge, especially in the case of rough dielectric surfaces. A lack of analytical solutions consigns this problem to numerical treatments. We report an analytic method for determining electrostatic potentials near curved dielectric membranes in a two-dimensional periodic "slab" geometry using a periodic summation of Green's functions. This method is amenable to simulating arbitrary groups of charges near surfaces with two-dimensional deformations. We concentrate on one-dimensional undulations. We show that increasing membrane undulation increases the asymmetry of interfacial charge distributions due to preferential ionic repulsion from troughs. In the limit of thick membranes, we recover results mimicking those for electrolytes near a single interface. Our work demonstrates that rough surfaces generate charge patterns in electrolytes of charged molecules or mixed-valence ions.

13.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649242

RESUMO

Patterns and morphology develop in living systems such as embryos in response to chemical signals. To understand and exploit the interplay of chemical reactions with mechanical transformations, chemomechanical polymer systems have been synthesized by attaching chemicals into hydrogels. In this work, we design autonomous responsive elastic shells that undergo morphological changes induced by chemical reactions. We couple the local mechanical response of the gel with the chemical processes on the shell. This causes swelling and deswelling of the gel, generating diverse morphological changes, including periodic oscillations. We further introduce a mechanical instability and observe buckling-unbuckling dynamics with a response time delay. Moreover, we investigate the mechanical feedback on the chemical reaction and demonstrate the dynamic patterns triggered by an initial deformation. We show the chemical characteristics that account for the shell morphology and discuss the future designs for autonomous responsive materials.

14.
Langmuir ; 39(21): 7514-7523, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37196238

RESUMO

We investigate the usage of polyelectrolyte complex materials for water remediation purposes, specifically their ability to remove nanoplastics from water, on which there is currently little to no prior research. We demonstrate that oppositely charged random copolymers are effective at quantitatively removing nanoplastic contamination from aqueous solution. The mechanisms underlying this remediation ability are explored through computational simulations, with corroborating quartz crystal microbalance adsorption experiments. We find that hydrophobic nanostructures and interactions likely play an important role.

15.
Faraday Discuss ; 246(0): 576-591, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37450272

RESUMO

Layered materials that perform mixed electron and ion transport are promising for energy harvesting, water desalination, and bioinspired functionalities. These functionalities depend on the interaction between ionic and electronic charges on the surface of materials. Here we investigate ion transport by an external electric field in an electrolyte solution confined in slit-like channels formed by two surfaces separated by distances that fit only a few water layers. We study different electrolyte solutions containing monovalent, divalent, and trivalent cations, and we consider walls made of non-polarizable surfaces and conductors. We show that considering the surface polarization of the confining surfaces can result in a significant increase in ionic conduction. The ionic conductivity is increased because the conductors' screening of electrostatic interactions enhances ionic correlations, leading to faster collective transport within the slit. While important, the change in water's dielectric constant in confinement is not enough to explain the enhancement of ion transport in polarizable slit-like channels.

16.
Soft Matter ; 19(5): 851-857, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632843

RESUMO

The dynamic motion produced by precessing magnetic fields can drive matter into far-from-equilibrium states. We predict 1D periodic ordering in systems of precessing rods when magnetic interactions between rods remain insignificant. The precession angle of the rods is completely determined by the field's precession angle and the ratio of the field's precession frequency and the characteristic response frequency of the rods. We develop a molecular dynamics model that explicitly calculates magnetic interactions between particles, and we also simulate rods in the limit of a strong and fast precessing magnetic field where inter-rod magnetic interactions are negligible, using a purely steric model. Our simulations show how steric interactions drive the rods from a positionally disordered phase (nematic) to a layered (smectic) phase. As the rod precession angle increases, the nematic-smectic transition density significantly decreases. The minimization of unfavorable steric interactions also induces phase separation in binary mixtures of rods of different lengths. This effect is general to any force that produces precession in elongated particles. This work will advance the understanding and control of out-of-equilibrium soft matter systems.

17.
Soft Matter ; 19(35): 6721-6730, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37622382

RESUMO

Soft swimming microrobots have attracted considerable attention due to their potential applications in diverse fields ranging from biomedicines to environmental remediation. The locomotion control is of importance to the research of micromachines and microrobots. Inspired by the motility strategies of living microorganisms, such as flagella, cilia, and euglenoids, we focus on propulsion mechanisms with a design of Janus magnetoelastic crystalline membrane microswimmers actuated by time-varying magnetic fields. Such a Janus swimmer consists of a ferromagnetic cap completed by a magnetoelastic membrane body, where superparamagnetic particles are uniformly distributed on the surface. Under the influence of external magnetic fields, the swimmer undergoes complex shape transitions due to the interplay between the magnetic dipole-dipole interactions, the elasticity of the magnetoelastic membranes, and also the hydrodynamics of surrounding fluids. We show that those shape changes are nonreciprocal, which can generate locomotion such that the propulsion speed can be optimized by tailoring the membrane elastic properties. Besides, we also demonstrate that the Janus swimmer can be magnetically guided in a spiral trajectory. With such adequate control of locomotion in both speed and direction via non-invasive magnetic fields, this study provides another promising candidate design for the future development of microswimmers.

18.
Eur Phys J E Soft Matter ; 46(12): 122, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060163

RESUMO

Acid-base equilibria directly influence the functionality and behavior of particles in a system. Due to the ionizing effects of acid-base functional groups, particles will undergo charge exchange. The degree of ionization and their intermolecular and electrostatic interactions are controlled by varying the pH and salt concentration of the solution in a system. Although the pH can be tuned in experiments, it is hard to model this effect using simulations or theoretical approaches. This is due to the difficulty in treating charge regulation and capturing the cooperative effects in a colloidal suspension with Coulombic interaction. In this work, we analyze a suspension of ionizable colloidal particles via molecular dynamics (MD) simulations, along with Monte Carlo simulations for charge regulation (MC-CR) and derive a phase diagram of the system as a function of pH. It is observed that as pH increases, particles functionalized with acid groups change their arrangement from face-centered cubic (FCC) packing to a disordered state. We attribute these transitions to an increase in the degree of charge polydispersity arising from an increase in pH. Our work shows that charge regulation leads to amorphous solids in colloids when the mean nanoparticle charge is sufficiently high.

19.
Proc Natl Acad Sci U S A ; 117(33): 19677-19684, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747575

RESUMO

Understanding nanoscale interactions at the interface between two media with different dielectric constants is crucial for controlling many environmental and biological processes, and for improving the efficiency of energy storage devices. In this contributed paper, we show that polarization effects due to such dielectric mismatch remarkably influence the double-layer structure of a polyelectrolyte solution confined between two charged surfaces. Surprisingly, the electrostatic potential across the adsorbed polyelectrolyte double layer at the confining surface is found to decrease with increasing surface charge density, indicative of a negative differential capacitance. Furthermore, in the presence of polarization effects, the electrostatic energy stored in the double-layer structure is enhanced with an increase in the charge amplification, which is the absorption of ions on a like-charged surface. We also find that all of the important double-layer properties, such as charge amplification, energy storage, and differential capacitance, strongly depend on the polyelectrolyte backbone flexibility and the solvent quality. These interesting behaviors are attributed to the interplay between the conformational entropy of the confined polyelectrolytes, the Coulombic interaction between the charged species, and the repulsion from the surfaces with lower dielectric constant.

20.
Soft Matter ; 18(11): 2193-2202, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35226038

RESUMO

The concept of origami has influenced the development of responsive materials that can mimic complex functions performed by living organisms. An ultimate goal is to discover and design soft materials that can be remotely actuated into diverse structures. To achieve this goal, we design and synthesize here a light-responsive spiropyran hydrogel system that can display dynamic shape changes upon irradiation with local light. We use a continuum polymer model to analyze the behavior of the constructed photoactive hydrogel, which is in good agreement with the experimental results. We explore different buckling modalities and patterns in a different range of parameters. The synthesis and fabrication of these materials demonstrate that the theoretical model can be used to drive the development of responsive photoactive systems.


Assuntos
Hidrogéis , Polímeros , Hidrogéis/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA