Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Enzyme Inhib Med Chem ; 39(1): 2377586, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39037009

RESUMO

Species of Leishmania and Trypanosoma genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets. Nonetheless, very few studies have been developed that make use of the purified enzymes. Moreover, FeSODC remains uncharacterised in Leishmania. In this work, for the first time, we describe the purification and enzymatic activity of recombinant versions of the four Leishmania FeSOD isoforms and establish an improved strategy for developing inhibitors. We propose a novel parameter [(V*cyt. c - Vcyt. c)/Vcyt. c] which, in contrast to that used in the classical cytochrome c reduction assay, correlates linearly with enzyme concentration. As a proof of concept, we determine the IC50 values of two ruthenium carbosilane metallodendrimers against these isoforms.


Assuntos
Antiprotozoários , Relação Dose-Resposta a Droga , Leishmania infantum , Testes de Sensibilidade Parasitária , Superóxido Dismutase , Leishmania infantum/enzimologia , Leishmania infantum/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Superóxido Dismutase/metabolismo , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia
2.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612821

RESUMO

Antibiotic resistance is currently a global health emergency. Metallodrugs, especially metal coordination complexes, comprise a broad variety of candidates to combat antibacterial infections. In this work, we designed a new family of Schiff base zinc(II) complexes with iminopyridine as an organic ligand and different inorganic ligands: chloride, nitrate, and acetate. The antibacterial effect of the Zn(II) complexes was studied against planktonic bacterial cells of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) strains. The results showed a moderate biocide activity in both types of planktonic bacteria, which arises from the metal complexation to the Schiff base ligand. Importantly, we confirmed the crucial effect of the metal, with Zn(II) improving the activity of Cu(II) counterparts previously reported. On the other hand, the impact of the inorganic ligands was not significant for the antibacterial effect but was relevant for the complex solubility. Finally, as proof of concept of topical antibacterial formulation, we formulated an emulsion containing the most lipophilic Zn(II) complex and confirmed a sustained release for 24 h in a vertical cell diffusion assay. The promising activity of iminopyridine Zn(II) complexes is potentially worth exploring in more detailed studies.


Assuntos
Complexos de Coordenação , Zinco , Zinco/farmacologia , Ligantes , Bases de Schiff/farmacologia , Nitratos , Complexos de Coordenação/farmacologia , Antibacterianos/farmacologia , Escherichia coli , Plâncton
3.
Nanomedicine ; 53: 102703, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591367

RESUMO

Carbosilane metallodendrimers, based on the arene Ru(II) complex (CRD13) and integrated to imino-pyridine surface groups have been investigated as an anticancer agent in a mouse model with triple-negative breast cancer. The dendrimer entered into the cells efficiently, and exhibited selective toxicity for 4T1 cells. In vivo investigations proved that a local injection of CRD13 caused a reduction of tumour mass and was non-toxic. ICP analyses indicated that Ru(II) accumulated in all tested tissues with a greater content detected in the tumour.


Assuntos
Antineoplásicos , Rutênio , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Rutênio/farmacologia , Rutênio/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
4.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835489

RESUMO

Copper carbosilane metallodendrimers containing chloride ligands and nitrate ligands were mixed with commercially available conventional anticancer drugs, doxorubicin, methotrexate and 5-fluorouracil, for a possible therapeutic system. To verify the hypothesis that copper metallodendrimers can form conjugates with anticancer drugs, their complexes were biophysically characterized using zeta potential and zeta size methods. Next, to confirm the existence of a synergetic effect of dendrimers and drugs, in vitro studies were performed. The combination therapy has been applied in two cancer cell lines: MCF-7 (human breast cancer cell line) and HepG2 (human liver carcinoma cell line). The doxorubicin (DOX), methotrexate (MTX) and 5-fluorouracil (5-FU) were more effective against cancer cells when conjugated with copper metallodendrimers. Such combination significantly decreased cancer cell viability when compared to noncomplexed drugs or dendrimers. The incubation of cells with drug/dendrimer complexes resulted in the increase of the reactive oxygen species (ROS) levels and the depolarization of mitochondrial membranes. Copper ions present in the dendrimer structures enhanced the anticancer properties of the whole nanosystem and improved drug effects, inducing both the apoptosis and necrosis of MCF-7 (human breast cancer cell line) and HepG2 (human liver carcinoma cell line) cancer cells.


Assuntos
Antineoplásicos , Neoplasias da Mama , Carcinoma , Dendrímeros , Humanos , Feminino , Dendrímeros/química , Cobre/química , Metotrexato , Ligantes , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Fluoruracila , Linhagem Celular Tumoral
5.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047610

RESUMO

Drug delivery systems such as dendrimers, liposomes, polymers or gold/silver nanoparticles could be used to advance modern medicine. One significant pharmacological problem is crossing biological barriers by commonly used drugs, e.g., in the treatment of neurodegenerative diseases, which have a problem of the blood-brain barrier (BBB) restricting drug delivery. Numerous studies have been conducted to find appropriate drug carriers that are safe, biocompatible and efficient. In this work, we evaluate pegylated gold nanoparticles AuNP14a and AuNP14b after their conjugation with therapeutic siRNA directed against APOE4. This genetic risk factor remains the strongest predictor for late-onset Alzheimer's disease. The study aimed to assess the biophysical properties of AuNPs/siAPOE complexes and to check their biological safety on healthy cells using human brain endothelial cells (HBEC-5i). Techniques such as fluorescence polarization, circular dichroism, dynamic light scattering, ζ-potential measurements and gel retardation assay showed that AuNPs form stable complexes with siRNA. Subsequently, cytotoxicity assays proved the biological safety of formed conjugates. Obtained results enabled us to find effective concentrations of AuNPs when complexes are formed and non-toxic for healthy cells. One of the studied nanoparticles, AuNP14b complexed with siRNA, displayed lower cytotoxicity (MTT assay, cells viability -74.8 ± 3.1%) than free nanoparticles (44.7 ± 3.6%). This may be promising for further investigations in nucleic acid delivery and could have practical use in treating neurodegenerative diseases.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , RNA Interferente Pequeno/genética , Ouro , Células Endoteliais , Prata , Polietilenoglicóis
6.
Langmuir ; 37(4): 1542-1550, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33475368

RESUMO

The unavailability of effective and safe human immunodeficiency virus (HIV) vaccines incites several approaches for development of the efficient antigen/adjuvant vaccination composite. In this study, three different dendronized gold nanoparticles (AuNPs 13-15) were investigated for a complexation ability with gp160 synthetic peptides derived from an HIV envelope. It has been shown that HIV peptides interacted with nanoparticles as evident from the changes in their secondary structures, restricted the mobility of the attached fluorescence dye, and enhanced peptide helicity confirmed by the fluorescence polarization and circular dichroism results. Transmission electron microscopy visualized complexes as cloud-like structures with attached nanoparticles. AuNP 13-15 nanoparticles bind negatively charged peptides depending on the number of functional groups; the fastest saturation and peptide retardation were observed for the most dendronized nanoparticle as indicated from dynamic light scattering, laser Doppler velocimetry, and agarose gel electrophoresis experiments. Dendronized gold nanoparticles can be considered one of the potential HIV peptide-based vaccination platforms.


Assuntos
HIV-1 , Nanopartículas Metálicas , Ouro , Proteína gp160 do Envelope de HIV , Humanos , Microscopia Eletrônica de Transmissão , Peptídeos
7.
Biomacromolecules ; 22(11): 4582-4591, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34613701

RESUMO

Accumulation of misfolded α-synuclein (α-syn) is a hallmark of Parkinson's disease (PD) thought to play important roles in the pathophysiology of the disease. Dendritic systems, able to modulate the folding of proteins, have emerged as promising new therapeutic strategies for PD treatment. Dendrimers have been shown to be effective at inhibiting α-syn aggregation in cell-free systems and in cell lines. Here, we set out to investigate the effects of dendrimers on endogenous α-syn accumulation in disease-relevant cell types from PD patients. For this purpose, we chose cationic carbosilane dendrimers of bow-tie topology based on their performance at inhibiting α-syn aggregation in vitro. Dopamine neurons were differentiated from induced pluripotent stem cell (iPSC) lines generated from PD patients carrying the LRRK2G2019S mutation, which reportedly display abnormal accumulation of α-syn, and from healthy individuals as controls. Treatment of PD dopamine neurons with non-cytotoxic concentrations of dendrimers was effective at preventing abnormal accumulation and aggregation of α-syn. Our results in a genuinely human experimental model of PD highlight the therapeutic potential of dendritic systems and open the way to developing safe and efficient therapies for delaying or even halting PD progression.


Assuntos
Dendrímeros , Doença de Parkinson , alfa-Sinucleína , Dendrímeros/farmacologia , Neurônios Dopaminérgicos , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Silanos , alfa-Sinucleína/genética
8.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281151

RESUMO

The application of siRNA in gene therapy is mainly limited because of the problems with its transport into cells. Utilization of cationic dendrimers as siRNA carriers seems to be a promising solution in overcoming these issues, due to their positive charge and ability to penetrate cell membranes. The following two types of carbosilane dendrimers were examined: CBD-1 and CBD-2. Dendrimers were complexed with pro-apoptotic siRNA (Mcl-1 and Bcl-2) and the complexes were characterized by measuring their zeta potential, circular dichroism and fluorescence of ethidium bromide associated with dendrimers. CBD-2/siRNA complexes were also examined by agarose gel electrophoresis. Both dendrimers form complexes with siRNA. Moreover, the cellular uptake and influence on the cell viability of the dendrimers and dendriplexes were evaluated using microscopic methods and XTT assay on MCF-7 cells. Microscopy showed that both dendrimers can transport siRNA into cells; however, a cytotoxicity assay showed differences in the toxicity of these dendrimers.


Assuntos
RNA Interferente Pequeno/uso terapêutico , Silanos/farmacologia , Cátions , Sobrevivência Celular , Dicroísmo Circular , Dendrímeros/química , Dendrímeros/farmacologia , Terapia Genética/métodos , Humanos , Células MCF-7 , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Tamanho da Partícula , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA de Cadeia Dupla/genética , RNA Interferente Pequeno/genética , Silanos/química , Silanos/metabolismo
9.
Int J Mol Sci ; 21(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526993

RESUMO

Ruthenium atoms located in the surfaces of carbosilane dendrimers markedly increase their anti-tumor properties. Carbosilane dendrimers have been widely studied as carriers of drugs and genes owing to such characteristic features as monodispersity, stability, and multivalence. The presence of ruthenium in the dendrimer structure enhances their successful use in anti-cancer therapy. In this paper, the activity of dendrimers of generation 1 and 2 against 1301 cells was evaluated using Transmission Electron Microscopy, comet assay and Real Time PCR techniques. Additionally, the level of reactive oxygen species (ROS) and changes of mitochondrial potential values were assessed. The results of the present study show that ruthenium dendrimers significantly decrease the viability of leukemia cells (1301) but show low toxicity to non-cancer cells (peripheral blood mononuclear cells-PBMCs). The in vitro test results indicate that the dendrimers injure the 1301 leukemia cells via the apoptosis pathway.


Assuntos
Antineoplásicos/farmacologia , Dendrímeros/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Rutênio/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Dendrímeros/química , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Espécies Reativas de Oxigênio/metabolismo , Rutênio/química
10.
Bioconjug Chem ; 29(5): 1584-1594, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29570280

RESUMO

Cell-to-cell transmission is the most effective pathway for the spread of human immunodeficiency virus (HIV-1). Infected cells expose virus-encoded fusion proteins on their surface as a consequence of HIV-1 replicative cycle that interacts with noninfected cells through CD4 receptor and CXCR4 coreceptor leading to the formation of giant multinucleated cells known as syncytia. Our group previously described the potent activity of dendrimers against CCR5-tropic viruses. Nevertheless, the study of G1-S4, G2-S16, and G3-S16 dendrimers in the context of X4-HIV-1 tropic cell-cell fusion referred to syncytium formation remains still unknown. These dendrimers showed a suitable biocompatibility in all cell lines studied and our results demonstrated that anionic carbosilane dendrimers G1-S4, G2-S16, and G3-S16 significantly inhibit the X4-HIV-1 infection, as well as syncytia formation, in a dose dependent manner. We also demonstrated that G2-S16 and G1-S4 significantly reduced syncytia formation in HIV-1 Env-mediated cell-to-cell fusion model. Molecular modeling and in silico models showed that G2-S16 dendrimer interfered with gp120-CD4 complex and demonstrated its potential use for a treatment.


Assuntos
Fármacos Anti-HIV/farmacologia , Dendrímeros/farmacologia , Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Silanos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Ânions/química , Ânions/farmacologia , Fármacos Anti-HIV/química , Antígenos CD4/metabolismo , Linhagem Celular , Dendrímeros/química , Infecções por HIV/metabolismo , HIV-1/fisiologia , Humanos , Modelos Moleculares , Silanos/química
11.
Biochim Biophys Acta ; 1858(12): 3005-3016, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27620331

RESUMO

In this study, dendrimers have been purposed as an alternative approach for delivery of HIV peptides to dendritic cells. We have investigated the interaction of dendriplexes formed from polyanionic HIV peptide Nef and cationic carbosilane dendrimer (CBD) with model lipid membranes - large unilamellar vesicles (LUVs), Langmuir monolayers and supported lipid membranes (sBLMs) containing various molar ratio of zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG2000). In our experiments, the lipid membranes represented the model of the plasma membrane of the cell. PEGylated lipids were used in order to model glycocalyx which constitutes the outer leaflet of cellular membranes. The presence of PEGylated lipids resulted in an increase of the phase transition temperature of the lipid bilayer of LUVs, in a decrease of specific volume and adiabatic compressibility. Fluorescence anisotropy study suggests that PEGylated LUVs possessed higher lipid order and decreased fluidity when compared to zwitterionic DMPC vesicles. The interaction of dendriplexes with monolayers was accompanied by the formation of the aggregates as revealed by BAM experiments. This conclusion has been confirmed also by AFM imaging of sBLMs. We have demonstrated that dendriplexes interact with lipid membranes for all types of lipid composition. Moreover, the stronger interaction of cationic dendrimer/peptide complexes with lipid monolayers, vesicles and sBLMs was observed for membranes composed of zwitterionic lipids than for PEGylated lipid membranes. Increased concentration of PEGylated lipids made this interaction weaker.


Assuntos
Dendrímeros/química , Bicamadas Lipídicas/química , Polietilenoglicóis/farmacologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Polarização de Fluorescência , Microscopia de Força Atômica , Espalhamento de Radiação , Termodinâmica
12.
Anal Bioanal Chem ; 409(22): 5337-5348, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28687880

RESUMO

Reduction or removal of solvents and reagents in protein sample preparation is a requirement. Dendrimers can strongly interact with proteins and have great potential as a greener alternative to conventional methods used in protein sample preparation. This work proposes the use of single-walled carbon nanotubes (SWCNTs) functionalized with carbosilane dendrons with sulfonate groups for protein sample preparation and shows the successful application of the proposed methodology to extract proteins from a complex matrix. SEM images of nanotubes and mixtures of nanotubes and proteins were taken. Moreover, intrinsic fluorescence intensity of proteins was monitored to observe the most significant interactions at increasing dendron generations under neutral and basic pHs. Different conditions for the disruption of interactions between proteins and nanotubes after protein extraction and different concentrations of the disrupting reagent and the nanotube were also tried. Compatibility of extraction and disrupting conditions with the enzymatic digestion of proteins for obtaining bioactive peptides was also studied. Finally, sulfonate-terminated carbosilane dendron-coated SWCNTs enabled the extraction of proteins from a complex sample without using non-environmentally friendly solvents that were required so far. Graphical Abstract Green protein extraction from a complex sample employing carbosilane dendron coated nanotubes.


Assuntos
Antracenos/química , Técnicas de Química Analítica/métodos , Nanotubos/química , Proteínas/química , Silanos/química , Microscopia Eletrônica de Varredura , Nanotubos de Carbono/química , Proteínas/análise , Proteínas/isolamento & purificação
13.
Nanomedicine ; 13(1): 49-58, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27562210

RESUMO

Hepatitis C virus (HCV) infection is a major biomedical problem worldwide. Although new direct antiviral agents (DAAs) have been developed for the treatment of chronic HCV infection, the potential emergence of resistant virus variants and the difficulties to implement their administration worldwide make the development of novel antiviral agents an urgent need. Moreover, no effective vaccine is available against HCV and transmission of the virus still occurs particularly when prophylactic measures are not taken. We used a cell-based system to screen a battery of polyanionic carbosilane dendrimers (PCDs) to identify compounds with antiviral activity against HCV and show that they inhibit effective virus adsorption of major HCV genotypes. Interestingly, one of the PCDs irreversibly destabilized infectious virions. This compound displays additive effect in combination with a clinically relevant DAA, sofosbuvir. Our results support further characterization of these molecules as nanotools for the control of hepatitis C virus spread.


Assuntos
Antivirais/farmacologia , Dendrímeros/farmacologia , Hepacivirus/efeitos dos fármacos , Silanos/farmacologia , Técnicas de Cultura de Células , Linhagem Celular , Genótipo , Hepacivirus/genética , Humanos , Polieletrólitos , Polímeros/farmacologia , Vírion/efeitos dos fármacos
14.
Molecules ; 22(10)2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28934169

RESUMO

In recent years innovative nanostructures are attracting increasing interest and, among them, dendrimers have shown several fields of application. Dendrimers can be designed and modified in plentiful ways giving rise to hundreds of different molecules with specific characteristics and functionalities. Biomedicine is probably the field where these molecules find extraordinary applicability, and this is probably due to their multi-valency and to the fact that several other chemicals can be coupled to them to obtain desired compounds. In this review we will describe the different production strategies and the tools and technologies for the study of their characteristics. Finally, we provide a panoramic overview of their applications to meet biomedical needs, especially their use as novel antimicrobials.


Assuntos
Anti-Infecciosos/química , Dendrímeros/química , Antibacterianos/química , Antivirais/química , Nanoestruturas/química
15.
Biochim Biophys Acta ; 1848(4): 907-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25576765

RESUMO

AIMS: We have investigated the effect of surface charge of model lipid membranes on their interactions with dendriplexes formed by HIV-derived peptides and 2 types of positively charged carbosilane dendrimers (CBD). METHODS: Interaction of dendriplexes with lipid membranes was measured by fluorescence anisotropy, dynamic light scattering and Langmuir-Blodgett techniques. The morphology of the complexes was examined by transmission electron microscopy. RESULTS: All dendriplexes independent of the type of peptide interacted with model lipid membranes. Negatively charged vesicles composed of a mixture of DMPC/DPPG interacted more strongly, and it was accompanied by an increase in anisotropy of the fluorescent probe localized in polar domain of lipid bilayers. There was also an increase in surface pressure of the lipid monolayers. Mixing negatively charged liposomes with dendriplexes increased liposome size and made their surface charges more positive. CONCLUSIONS: HIV-peptide/dendrimer complexes interact with model lipid membranes depending on their surface charge. Carbosilane dendrimers can be useful as non-viral carriers for delivering HIV-peptides into cells.


Assuntos
Dendrímeros/metabolismo , HIV-1/química , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Fragmentos de Peptídeos/metabolismo , Silanos/metabolismo , Dendrímeros/química , Polarização de Fluorescência , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Lipossomos , Fluidez de Membrana , Lipídeos de Membrana/química , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/química , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Silanos/química
16.
Anal Bioanal Chem ; 408(27): 7679-7687, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27613012

RESUMO

Protein sample preparation is a critical and an unsustainable step since it involves the use of tedious methods that usually require high amount of solvents. The development of new materials offers additional opportunities in protein sample preparation. This work explores, for the first time, the potential application of carboxylate-terminated carbosilane dendrimers to the purification/enrichment of proteins. Studies on dendrimer binding to proteins, based on protein fluorescence intensity and emission wavelengths measurements, demonstrated the interaction between carboxylate-terminated carbosilane dendrimers and proteins at all tested pH levels. Interactions were greatly affected by the protein itself, pH, and dendrimer concentration and generation. Especially interesting was the interaction at acidic pH since it resulted in a significant protein precipitation. Dendrimer-protein interactions were modeled observing stable complexes for all proteins. Carboxylate-terminated carbosilane dendrimers at acidic pH were successfully used in the purification/enrichment of proteins extracted from a complex sample. Graphical Abstract Images showing the growing turbidity of solutions containing a mixture of proteins (lysozyme, myoglobin, and BSA) at different protein:dendrimer ratios (1:0, 1:1, 1:8, and 1:20) at acidic pH and SDS-PAGE profiles of the corresponsing supernatants. Comparison of SDS-PAGE profiles for the pellets obtained during the purification of proteins present in a complex sample using a conventional "no-clean" method based on acetone precipitation and the proposed "greener" method using carboxylate-terminated carbosilane dendrimer at a 1:20 protein:dendrimer ratio.


Assuntos
Ácidos Carboxílicos/química , Dendrímeros/química , Muramidase/isolamento & purificação , Mioglobina/isolamento & purificação , Soroalbumina Bovina/isolamento & purificação , Silanos/química , Precipitação Química , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Muramidase/química , Mioglobina/química , Proteínas de Plantas/isolamento & purificação , Ligação Proteica , Estrutura Secundária de Proteína , Prunus domestica/química , Sementes/química , Soroalbumina Bovina/química , Solventes
17.
Inorg Chem ; 54(18): 8943-56, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26360407

RESUMO

A synthetic protocol has been designed to incorporate the DO3A ligand to the focal point of cationic or anionic carbosilane dendrons, affording a set of bifunctional chelating agents (BFCAs) useful for potential biomedical applications. The complexation behavior study of ionic BFCAs has been accomplished by UV-vis and electron paramagnetic resonance spectroscopy as well as potentiometric titrations. The presence of the dendron branches modifies the complexation capacity of the macrocyclic ring with respect to that of the 1,4,7,10-tetraazacyclodocecane-N,N',N″,N‴-tetraacetic acid (DOTA) ligand. Also, a different behavior has been observed in the carboxylate-terminated dendrons against analogous sulfonate- or amine-terminated dendrons in the contribution of the branches and peripheral groups to the coordination modes. The presence or not of Cu-S2O2 coordination sites and the generation can be important factors to take into account for considering a particular biomedical application.


Assuntos
Acetatos/química , Compostos Aza/química , Quelantes/química , Quelantes/síntese química , Cobre/química , Dendrímeros/química , Dendrímeros/síntese química , Compostos de Organossilício/química , Compostos de Organossilício/síntese química , Técnicas de Química Sintética , Espectroscopia de Ressonância de Spin Eletrônica
18.
Nanomedicine ; 11(6): 1481-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25835558

RESUMO

Polyanionic carbosilane dendrimers (PCDs) are potential candidates for the development of new microbicides for the prevention of HIV transmission. Tenofovir (TFV), which has dual antiviral activity (anti-HIV/HSV-2), and maraviroc (MRV) are the most studied antiretrovirals as microbicides. Here, we introduce developments in the design of innovative dendrimer-based microbicides. We also review and discuss the combination of various PCDs with TFV and/or MRV for their anti-HIV-1 activity and synergistic combinatory potential. Well-defined combinations blocking HIV-1 infection in early steps of HIV-1 replication provide greater efficacy than monotherapy, as reflected by the decrease in concentration and increase in HIV-1 inhibition. These combinations are characterized by lower doses, which minimize toxic side-effects and the emergence of multi-drug resistant mutants. The above facts suggest that the combination of first- and second-generation PCDs with TFV and/or MRV represents a promising candidate microbicide for preventing HIV-1 sexual transmission and simultaneously suppressing HSV-2. FROM THE CLINICAL EDITOR: HIV infection remains a significant and unresolved problem for humankind, despite the development of combination antiretroviral therapy. It has been found that polyanionic carbosilane dendrimers have efficacy in preventing HIV transmission. In this comprehensive review article, the authors discuss the current status and latest development of the use of dendrimers in combination with other antiretroviral drugs as microbicides, which should stimulate others into further research in the fight against HIV.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Dendrímeros/química , Polímeros/química , Silanos/química , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacologia , Anti-Infecciosos/administração & dosagem , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Polieletrólitos , Replicação Viral/efeitos dos fármacos
19.
Nanomedicine ; 11(6): 1299-308, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25959924

RESUMO

The development of a safe, effective, and low-priced topical microbicide to prevent HIV-1 sexual transmission is urgently needed. The emerging field of nanotechnology plays an important role in addressing this challenge. We demonstrate that topical vaginal administration of 3% G2-S16 prevents HIV-1JR-CSF transmission in humanized (h)-BLT mice in 84% with no presence of HIV-1 RNA and vaginal lesions. Second-generation polyanionic carbosilane dendrimer G2-S16 with silica core and 16 sulfonate end-groups exerts anti-HIV-1 activity at an early stage of viral replication, blocking the gp120/CD4 interaction, acting on the virus, and inhibiting the cell-to-cell HIV-1 transmission, confirming its multifactorial and non-specific ability. This study represents the first demonstration that transmission of HIV-1 can be efficiently blocked by vaginally applied G2-S16 in h-BLT mice. These findings provide a step forward in the development of G2-S16-based vaginal microbicides to prevent vaginal HIV-1 transmission in humans. FROM THE CLINICAL EDITOR: HIV infections remain a significant problem worldwide and the major route of transmission is through sexual activity. In this article, the authors developed an antiviral agent containing polyanionic carbosilane dendrimer with silica core and 16 sulfonate end-groups. When applied vaginally, this was shown to exert anti-HIV protection. These positive findings may offer hope in the fight against the spread of HIV epidemic.


Assuntos
Alcanossulfonatos/administração & dosagem , Fármacos Anti-HIV/administração & dosagem , Dendrímeros/administração & dosagem , Infecções por HIV/transmissão , Compostos de Organossilício/administração & dosagem , Animais , Feminino , HIV-1 , Humanos , Camundongos , Vagina
20.
Parasitol Res ; 114(2): 473-86, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25358240

RESUMO

Dendrimers are repetitively branched molecules with a broad spectrum of applications, mainly for their antimicrobial properties and as nanocarriers for other molecules. Recently, our research group have synthesized and studied their activity against Acanthamoeba sp., causative agent of a severe ocular disease in humans: Acanthamoeba keratitis. New cationic carbosilane dendrimers were tested against the protozoa forms at different concentrations and for different incubation times. Trophozoite viability was determined by manual counting and cyst viability by observing excystment in microplates with fresh culture medium. Cytotoxicity was checked on HeLa cells using the microculture tetrazolium assay. Alterations were observed by optical microscopy and by flow cytometry staining with propidium iodide. Six out of the 18 dendrimers tested were non-cytotoxic and effective against the trophozoite form, having one of them (dendrimer 14 with an IC50 of 2.4 + 0.1 mg/L) a similar activity to chlorhexidine digluconate (IC50 1.7 + 0.1 mg/L). This dendrimer has a polyphenoxo core and a sulphur atom close to the six -NH3+ terminal groups. On the other hand, only two dendrimers showed some effect against cysts (dendrimers 14 and 17). However, their minimum cysticidal concentrations were cytotoxic and less effective than the control drug. The alterations on the amoeba morphology produced by the treatment with dendrimers were size reduction, increased complexity, loss of acanthopodia and cell membrane disruption. In conclusion, these results suggest that some dendrimers may be studied in animal models to test their effect and that new dendrimers with similar features should be synthesized.


Assuntos
Ceratite por Acanthamoeba/tratamento farmacológico , Acanthamoeba/efeitos dos fármacos , Dendrímeros/farmacologia , Silanos/farmacologia , Ceratite por Acanthamoeba/parasitologia , Animais , Anti-Infecciosos Locais/farmacologia , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Clorexidina/análogos & derivados , Clorexidina/farmacologia , Lentes de Contato/parasitologia , Meios de Cultura , Dendrímeros/química , Citometria de Fluxo , Células HeLa , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Silanos/química , Trofozoítos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA