Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687241

RESUMO

Speech comprehension entails the neural mapping of the acoustic speech signal onto learned linguistic units. This acousto-linguistic transformation is bi-directional, whereby higher-level linguistic processes (e.g. semantics) modulate the acoustic analysis of individual linguistic units. Here, we investigated the cortical topography and linguistic modulation of the most fundamental linguistic unit, the phoneme. We presented natural speech and "phoneme quilts" (pseudo-randomly shuffled phonemes) in either a familiar (English) or unfamiliar (Korean) language to native English speakers while recording functional magnetic resonance imaging. This allowed us to dissociate the contribution of acoustic vs. linguistic processes toward phoneme analysis. We show that (i) the acoustic analysis of phonemes is modulated by linguistic analysis and (ii) that for this modulation, both of acoustic and phonetic information need to be incorporated. These results suggest that the linguistic modulation of cortical sensitivity to phoneme classes minimizes prediction error during natural speech perception, thereby aiding speech comprehension in challenging listening situations.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Fonética , Percepção da Fala , Humanos , Percepção da Fala/fisiologia , Feminino , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto , Adulto Jovem , Linguística , Estimulação Acústica/métodos , Compreensão/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem
2.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328173

RESUMO

Functional magnetic resonance imaging (fMRI) has emerged as an essential tool for exploring human brain function. Submillimeter fMRI, in particular, has emerged as a tool to study mesoscopic computations. The inherently low signal-to-noise ratio (SNR) at submillimeter resolutions warrants the use of denoising approaches tailored at reducing thermal noise - the dominant contributing noise component in high resolution fMRI. NORDIC PCA is one of such approaches, and has been benchmarked against other approaches in several applications. Here, we investigate the effects that two versions of NORDIC denoising have on auditory submillimeter data. As investigating auditory functional responses poses unique challenges, we anticipated that the benefit of this technique would be especially pronounced. Our results show that NORDIC denoising improves the detection sensitivity and the reliability of estimates in submillimeter auditory fMRI data. These effects can be explained by the reduction of the noise-induced signal variability. However, we also observed a reduction in the average response amplitude (percent signal), which may suggest that a small amount of signal was also removed. We conclude that, while evaluating the effects of the signal reduction induced by NORDIC may be necessary for each application, using NORDIC in high resolution auditory fMRI studies may be advantageous because of the large reduction in variability of the estimated responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA