Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 108(1): 125-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37498631

RESUMO

Grapevine virus A (GVA) is an economically important virus and a member of the genus Vitivirus (family Betaflexiviridae) that causes a range of symptoms with qualitative and quantitative effects on grape production. Wild and domesticated species of Vitis, including hybrids used as rootstocks, are considered important natural hosts of GVA. Mechanical transmission to some herbaceous plant species, graft transmission, and vector transmission from grape to grape by various mealybugs and soft scale insects have been reported. Under laboratory and greenhouse conditions, this study demonstrates the transmission of GVA from grapes to alternative hosts by the vine mealybug (Planococcus ficus). Results of ELISA, end-point one-step RT-PCR, and real-time RT-PCR, and in some cases electron microscopy and genome sequencing, confirmed successful transmission to three new plant species commonly found in Croatian vineyards: velvetleaf (Abutilon theophrasti), redroot pigweed (Amaranthus retroflexus), and field poppy (Papaver rhoeas), along with Chenopodium murale and the previously known host Nicotiana benthamiana, with variable infection rates. Depending on the host species, symptoms in the form of leaf reddening, yellow spots, reduced growth of lateral shoots, systemic vein clearing, foliar deformation and rugosity, and dwarfism were observed in GVA-infected plants, whereas no symptoms were observed in infected plants of A. theophrasti. Reverse transmission from these new hosts to grapevines by Pl. ficus was not successful. These results confirm four new GVA host species and open new research venues.


Assuntos
Flexiviridae , Hemípteros , Vírus de Plantas , Animais , Flexiviridae/genética , Vírus de Plantas/genética , Nicotiana
2.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003356

RESUMO

Positive-strand RNA virus replication invariably occurs in association with host cell membranes, which are induced to proliferate and rearrange to form vesicular structures where the virus replication complex is assembled. In particular, carnation Italian ringspot virus (CIRV) replication takes place on the mitochondrial outer membrane in plant and yeast cells. In this work, the model host Saccharomyces cerevisiae was used to investigate the effects of CIRV p36 expression on the mitochondrial structure and function through the determination of mitochondrial morphology, mitochondrial respiratory parameters, and respiratory chain complex activities in p36-expressing cells. CIRV p36 ectopic expression was shown to induce alterations in the mitochondrial network associated with a decrease in mitochondrial respiration and the activities of NADH-cyt c, succinate-cyt c (C II-III), and cytochrome c oxidase (C IV) complexes. Our results suggest that the decrease in respiratory complex activity could be due, at least in part, to alterations in mitochondrial dynamics. This yeast-based model will be a valuable tool for identifying molecular targets to develop new anti-viral strategies.


Assuntos
Dinâmica Mitocondrial , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transporte de Elétrons , Membranas Mitocondriais/metabolismo
3.
RNA Biol ; 16(7): 906-917, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30990352

RESUMO

Understanding how viruses and subviral agents initiate disease is central to plant pathology. Whether RNA silencing mediates the primary lesion triggered by viroids (small non-protein-coding RNAs), or just intermediate-late steps of a signaling cascade, remains unsolved. While most variants of the plastid-replicating peach latent mosaic viroid (PLMVd) are asymptomatic, some incite peach mosaics or albinism (peach calico, PC). We have previously shown that two 21-nt small RNAs (PLMVd-sRNAs) containing a 12-13-nt PC-associated insertion guide cleavage, via RNA silencing, of the mRNA encoding a heat-shock protein involved in chloroplast biogenesis. To gain evidence supporting that such event is the initial lesion, and more specifically, that different chloroses have different primary causes, here we focused on a PLMVd-induced peach yellow mosaic (PYM) expressed in leaf sectors interspersed with others green. First, sequencing PLMVd-cDNAs from both sectors and bioassays mapped the PYM determinant at one nucleotide, a notion further sustained by the phenotype incited by other natural and artificial PLMVd variants. And second, sRNA deep-sequencing and RNA ligase-mediated RACE identified one PLMVd-sRNA with the PYM-associated change that guides cleavage, as predicted by RNA silencing, of the mRNA encoding a thylakoid translocase subunit required for chloroplast development. RT-qPCR showed lower accumulation of this mRNA in PYM-expressing tissues. Remarkably, PLMVd-sRNAs triggering PYM and PC have 5'-terminal Us, involving Argonaute 1 in what likely are the initial alterations eliciting distinct chloroses.


Assuntos
Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/virologia , Vírus de Plantas/genética , Plastídeos/virologia , Polimorfismo de Nucleotídeo Único/genética , Replicação Viral/genética , Sequência de Aminoácidos , Sequência de Bases , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Subunidades Proteicas/metabolismo , Prunus persica/ultraestrutura , Prunus persica/virologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tilacoides/metabolismo
4.
Chemphyschem ; 18(9): 1165-1174, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28135402

RESUMO

In this work the effects of the pressure between 1-150 Bar on pulsed laser ablation in liquids (PLAL) during the production of silver nanoparticles (AgNPs) in water was investigated. The produced NPs are the results of two different well-known stages which are the plasma and the bubble evolution occurring until the generated material is released into the solution. The main aim of this work is to show which roles is played by the variation of water pressure on the laser induced plasma and the cavitation bubble dynamics during the NPs formation. Their implication on the comprehension of the as-produced NPs formation mechanisms is treated. The typical timescales of the different stages occurring in water at different pressures have been studied by optical emission spectroscopy (OES), imaging and shadowgraph experiments. Finally surface plasmon resonance (SPR) spectroscopy, transmission electron microscopy (TEM), dynamic light scattering (DLS) and scanning electron microscopy (SEM) for characterization of the material released in solution, have been used.

5.
Proc Natl Acad Sci U S A ; 111(11): 4291-6, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24594602

RESUMO

RNA interference (RNAi) is a powerful approach for elucidating gene functions in a variety of organisms, including phytopathogenic fungi. In such fungi, RNAi has been induced by expressing hairpin RNAs delivered through plasmids, sequences integrated in fungal or plant genomes, or by RNAi generated in planta by a plant virus infection. All these approaches have some drawbacks ranging from instability of hairpin constructs in fungal cells to difficulties in preparing and handling transgenic plants to silence homologous sequences in fungi grown on these plants. Here we show that RNAi can be expressed in the phytopathogenic fungus Colletotrichum acutatum (strain C71) by virus-induced gene silencing (VIGS) without a plant intermediate, but by using the direct infection of a recombinant virus vector based on the plant virus, tobacco mosaic virus (TMV). We provide evidence that a wild-type isolate of TMV is able to enter C71 cells grown in liquid medium, replicate, and persist therein. With a similar approach, a recombinant TMV vector carrying a gene for the ectopic expression of the green fluorescent protein (GFP) induced the stable silencing of the GFP in the C. acutatum transformant line 10 expressing GFP derived from C71. The TMV-based vector also enabled C. acutatum to transiently express exogenous GFP up to six subcultures and for at least 2 mo after infection, without the need to develop transformation technology. With these characteristics, we anticipate this approach will find wider application as a tool in functional genomics of filamentous fungi.


Assuntos
Colletotrichum/genética , Regulação Fúngica da Expressão Gênica/genética , Genômica/métodos , Interferência de RNA , Vetores Genéticos , Microscopia Eletrônica de Transmissão , RNA Interferente Pequeno/genética , Vírus do Mosaico do Tabaco , Transfecção/métodos
6.
J Gen Virol ; 97(11): 3073-3087, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27604547

RESUMO

Mulberry badnavirus 1 (MBV1) has been characterized as the aetiological agent of a disease observed on a mulberry tree in Lebanon (accession L34). A small RNA next-generation sequencing library was prepared and analysed from L34 extract, and these data together with genome walking experiments have been used to obtain the full-length virus sequence. Uniquely among badnaviruses, the MBV1 sequence encodes a single ORF containing all the conserved pararetrovirus motifs. Two genome sizes (6 kb and 7 kb) were found to be encapsidated in infected plants, the shortest of which shares 98.95 % sequence identity with the full L34 genome. In the less-than-full-length deleted genome, the translational frame for the replication domains was conserved, but the particle morphology, observed under electron microscopy, was somehow altered. Southern blot hybridization confirmed the coexistence of the two genomic forms in the original L34 accession, as well as the absence of cointegration in the plant genome. Both long and deleted genomes were cloned and proved to be infectious in mulberry. Differently from other similar nuclear-replicating viruses or viroids, the characterization of the MBV1-derived small RNAs showed a reduced amount of the 24-mer class size.


Assuntos
Badnavirus/genética , Morus/virologia , Doenças das Plantas/virologia , Sequência de Aminoácidos , Badnavirus/química , Badnavirus/classificação , Badnavirus/isolamento & purificação , Sequência de Bases , Genoma Viral , Genômica , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Alinhamento de Sequência , Proteínas Virais/química , Proteínas Virais/genética
7.
Plant Dis ; 100(1): 66-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30688578

RESUMO

Citrus ringspot is a graft-transmissible disease, and at least two taxonomically distinct viral species are associated with this syndrome: Citrus psorosis virus (CPsV) and Indian citrus ringspot virus (ICRSV). Neither of these two viruses was detected, however, by serological or molecular assays in symptomatic tissues from citrus trees in southern Iran, where the ringspot syndrome is widespread. By contrast, electron microscopy and molecular assays revealed the presence of a rhabdovirus-like virus, which was graft transmitted to several citrus species and mechanically to herbaceous hosts. Virus particles were bacilliform and resembled rhabdovirus nucleocapsids deprived of the lipoprotein envelope. Partial sequences of the viral nucleoprotein and RNA polymerase genes showed a distant genetic relatedness with cytorhabdoviruses. This virus appears to be a novel species, for which the name Iranian citrus ringspot-associated virus (IrCRSaV) is suggested.

8.
Sensors (Basel) ; 16(11)2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27869726

RESUMO

Early diagnosis of plant virus infections before the disease symptoms appearance may represent a significant benefit in limiting disease spread by a prompt application of appropriate containment steps. We propose a label-free procedure applied on a device structure where the electrical signal transduction is evaluated via impedance spectroscopy techniques. The device consists of a droplet suspension embedding two representative purified plant viruses i.e., Tomato mosaic virus and Turnip yellow mosaic virus, put in contact with a highly hydrophobic plasma textured silicon surface. Results show a high sensitivity of the system towards the virus particles with an interestingly low detection limit, from tens to hundreds of attomolar corresponding to pg/mL of sap, which refers, in the infection time-scale, to a concentration of virus particles in still-symptomless plants. Such a threshold limit, together with an envisaged engineering of an easily manageable device, compared to more sophisticated apparatuses, may contribute in simplifying the in-field plant virus diagnostics.


Assuntos
Impedância Elétrica , Vírus de Plantas/metabolismo , Silício/química , Interações Hidrofóbicas e Hidrofílicas , Tobamovirus/metabolismo
9.
J Med Virol ; 87(1): 102-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24797918

RESUMO

In this study, stable high-five insect cell line constitutively expressing rotavirus (RV) VP2 was co-transfected with VP6 and VP7-recombinant plasmids. The presence of RV proteins in stably transfected high-five cells was verified by molecular and protein analyses. To yield self-assembled triple-layered RV-like particles (tlRLPs), a stable insect high-five cell line was generated to produce RV VP6 and VP7 besides VP2. Self-assembled tlRLPs were observed by transmission electron microscopy (TEM), and enzyme-linked immunosorbent assay (ELISA) was used to assess their antigenicity in vivo. The results suggest that the stable transfected high-five cells are able to generate tlRLPs with the efficient antigenicity.


Assuntos
Antígenos Virais/metabolismo , Proteínas do Capsídeo/metabolismo , Vacinas contra Rotavirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Virossomos/metabolismo , Animais , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica , Insetos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vacinas contra Rotavirus/administração & dosagem , Vacinas contra Rotavirus/genética , Vacinas contra Rotavirus/isolamento & purificação , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação , Virossomos/ultraestrutura
10.
Chemistry ; 20(34): 10745-51, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25060114

RESUMO

The interaction of nanoparticles with proteins has emerged as a key issue in addressing the problem of nanotoxicity. We investigated the interaction of silver nanoparticles (AgNPs), produced by laser ablation with human ubiquitin (Ub), a protein essential for degradative processes in cells. The surface plasmon resonance peak of AgNPs indicates that Ub is rapidly adsorbed on the AgNP surface yielding a protein corona; the Ub-coated AgNPs then evolve into clusters held together by an amyloid form of the protein, as revealed by binding of thioflavin T fluorescent dye. Transthyretin, an inhibitor of amyloid-type aggregation, impedes aggregate formation and disrupts preformed AgNP clusters. In the presence of sodium citrate, a common stabilizer that confers an overall negative charge to the NPs, Ub is still adsorbed on the AgNP surface, but no clustering is observed. Ub mutants bearing a single mutation at one edge ß strand (i.e. Glu16Val) or in loop (Glu18Val) behave in a radically different manner.


Assuntos
Amiloide/química , Lasers , Nanopartículas Metálicas/química , Prata/química , Ubiquitina/química , Amiloide/metabolismo , Benzotiazóis , Citratos/química , Humanos , Mutação Puntual , Estrutura Secundária de Proteína , Citrato de Sódio , Ressonância de Plasmônio de Superfície , Tiazóis/química , Ubiquitina/genética , Ubiquitina/metabolismo
11.
Arch Biochem Biophys ; 560: 73-82, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25051344

RESUMO

In Alzheimer's disease (AD), native Aß protein monomers aggregate through the formation of a variety of water-soluble, toxic oligomers, ultimately leading to insoluble fibrillar deposits. The inhibition of oligomers formation and/or their dissociation into non-toxic monomers, are considered an attractive strategy for the prevention and treatment of AD. A number of studies have demonstrated that small molecules, containing single or multiple (hetero)aromatic rings, can inhibit protein aggregation, being potentially effective in AD treatment. Starting from previously reported data on the antiamyloidogenic activity of a series of 3-hydrazonoindolinones, compound PT2 was selected to deeply investigate the inhibitory mechanism in the Aß aggregation cascade. We compared data from DLS, NMR, CD, TEM and ThT fluorescence measures to ascertain the interactions with amyloidogenic species formed in vitro during the aggregation process, and confirmed this feature with cell viability tests on HeLa cultured cells. PT2 was effective in disrupting toxic oligomers and mature amyloid fibrils, stabilizing Aß as non-toxic, ß-sheet arranged, ThT-insensitive protofilaments. It also strongly reduced cellular toxicity caused by Aß and showed good antioxidant properties in two radical scavenging tests. Taken together, these data confirmed that PT2 is a small molecule inhibitor of Aß oligomerization and toxicity, displaying also additional activity as antioxidant.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Sequestradores de Radicais Livres/farmacologia , Indóis/farmacologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Multimerização Proteica/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sequestradores de Radicais Livres/metabolismo , Células HeLa , Humanos , Indóis/metabolismo , Cinética , Fragmentos de Peptídeos/metabolismo , Estrutura Secundária de Proteína/efeitos dos fármacos
12.
J Econ Entomol ; 107(4): 1316-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25195417

RESUMO

Discovery of Xylella fastidiosa from olive trees with "Olive quick decline syndrome" in October 2013 on the west coast of the Salento Peninsula prompted an immediate search for insect vectors of the bacterium. The dominant xylem-fluid feeding hemipteran collected in olive orchards during a 3-mo survey was the meadow spittlebug, Philaenus spumarius (L.) (Hemiptera: Aphrophoridae). Adult P. spumarius, collected in November 2013 from ground vegetation in X. fastidiosa-infected olive orchards, were 67% (40 out of 60) positive for X. fastidiosa by polymerase chain reaction (PCR) assays. Euscelis lineolatus Brullé were also collected but tested negative for the pathogen. Transmission tests with P. spumarius collected from the Salento area were, therefore, conducted. After a 96-h inoculation access period with 8 to 10 insects per plant and a 30-d incubation period, PCR results showed P. spumarius transmitted X. fastidiosa to two of five periwinkle plants but not to the seven olive plants. Sequences of PCR products from infected periwinkle were identical with those from X. fastidiosa-infected field trees. These data showed P. spumarius as a vector of X. fastidiosa strain infecting olives trees in the Salento Peninsula, Italy.


Assuntos
Hemípteros/microbiologia , Insetos Vetores/microbiologia , Olea/microbiologia , Xylella/isolamento & purificação , Xylella/fisiologia , Animais , Interações Hospedeiro-Patógeno , Itália , Doenças das Plantas/microbiologia
13.
Front Microbiol ; 15: 1412650, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863752

RESUMO

Xylella fastidiosa (Xf) is a major phytosanitary threat to global agricultural production. The complexity and difficulty of controlling Xf underscore the pressing need for novel antibacterial agents, i.e., bacteriophages, which are natural predators of bacteria. In this study, a novel lytic bacteriophage of Xf subsp. pauca, namely Xylella phage MATE 2 (MATE 2), was isolated from sewage water in southern Italy. Biological characterization showed that MATE 2 possessed a broad-spectrum of antibacterial activity against various phytobacteria within the family Xanthomonadaceae, a rapid adsorption time (10 min), and high resistance to a broad range of pH (4-10) and temperatures (4-60°C). Most importantly, MATE 2 was able to suppress the growth of Xf subsp. pauca cells in liquid culture for 7 days, demonstrating its potential as an effective antibacterial agent against Xf. The genomic and electron microscopy analyses revealed that MATE 2 is a new species tentatively belonging to the genus Carpasinavirus within the class Caudoviricetes, with an isometric capsid head of 60 ± 5 nm along with a contractile tail of 120 ± 7.5 nm. Furthermore, the high-throughput sequencing and de novo assembly generated a single contig of 63,695 nucleotides in length; representing a complete genome composed of 95 Open Reading Frames. Bioinformatics analysis performed on MATE 2 genome revealed the absence of lysogenic mediated genes, and genes encoding virulence factors, antibiotic resistance, and toxins. This study adds a new phage to the very short list of Xf-infecting lytic phages, whose in-vitro antibacterial activity has been ascertained, while its efficacy on Xf-infected olive trees in the field has yet to be determined.

14.
Front Microbiol ; 15: 1406672, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812684

RESUMO

The lack of sustainable strategies for combating Xylella fastidiosa (Xf) highlights the pressing need for novel practical antibacterial tools. In this study, Lactococcus lactis subsp. lactis strain ATCC 11454 (L. lactis), known for its production of nisin A, was in vitro tested against Xf subsp. pauca. Preliminary investigations showed that nisin A was involved in a strong antagonistic activity exhibited by L. lactis against Xf. Thus, the efficacy of nisin A was comprehensively assessed through a combination of in vitro and in planta experiments. In vitro investigations employing viable-quantitative PCR, spot assay, turbidity reduction assay, fluorescence microscopy, and transmission electron microscopy demonstrated nisin's robust bactericidal effect on Xf at a minimal lethal concentration of 0.6 mg/mL. Moreover, results from fluorescence and transmission electron microscopies indicated that nisin directly and rapidly interacts with the membranes of Xf cells, leading to the destruction of bacterial cells in few minutes. In in planta tests, nisin also demonstrated the ability to tackle Xf infections within Nicotiana benthamiana plants that remained asymptomatic 74 days post inoculation. Furthermore, RPLC-ESI-MS/MS analyses showed that nisin translocated to all parts of the plants and remains intact for up to 9 days. For the first time, this study underscores the nisin-based strategy as a realistic and eco-friendly approach to be further investigated against Xf infections in the field.

15.
Nanomaterials (Basel) ; 13(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37049378

RESUMO

Quarantine pathogens require the investigation of new tools for effective plant protection. In particular, research on sustainable agrochemicals is the actual challenge. Plant extracts, essential oils, and gels are natural sources of efficient biocides, such as aromatic secondary metabolites. Thymol is the major phenolic constituent of thyme and oregano essential oils, and it can inhibit many pathogenic microbes. Thymol nanoparticles were obtained through adsorption on CaCO3 nanocrystals, exploiting their carrier action. High loading efficiency and capability were reached as verified through UV and TGA measurements. We report the first study of thymol effect on Xylella fastidiosa, conducing both fluorometric assay and in vitro inhibition assay. The first test confirmed the great antibacterial effect of this compound. Finally, an in vitro test revealed an interesting synergistic action of thymol and nanocarriers, suggesting the potential application of thymol-nanoparticles as effective biocides to control Xylella fastidiosa infection.

16.
Arch Virol ; 157(8): 1629-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22592959

RESUMO

Tepovirus is a new monotypic genus of plant viruses typified by potato virus T (PVT), a virus with helically constructed filamentous particles that are 640 nm long, previously classified as unassigned species in the family Betaflexiviridae. Virions have a single-stranded positive-sense polyadenylated RNA genome that is 6.5 kb in size, and a single type of coat protein with a size of 24 kDa. The viral genome contains three slightly overlapping ORFs encoding, respectively, the replication-related proteins (ORF1), a putative movement protein of the 30 K type (ORF2) and the coat protein (ORF3). Its structure and organization (number and order of genes) resembles that of trichoviruses and of citrus leaf blotch virus (CLBV, genus Citrivirus) but has a smaller size. Besides potato, the primary host, PVT can experimentally infect herbaceous hosts by mechanical inoculation. No vector is known, and transmission is through propagating material (tubers), seeds and pollen. PVT has a number of biological, physical and molecular properties that differentiate it from betaflexiviruses with a 30K-type movement protein. It is phylogenetically distant from all these viruses, but least so from grapevine virus A (GVA), the type member of the genus Vitivirus, with which it groups in trees constructed using the sequences of all of the genes.


Assuntos
Flexiviridae/classificação , Flexiviridae/genética , Solanum tuberosum/virologia , Sequência de Aminoácidos , Composição de Bases , Genoma Viral , Filogenia , Proteínas Virais/química , Proteínas Virais/genética
17.
Plants (Basel) ; 11(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501256

RESUMO

Cucumber mosaic virus (CMV), which has great impact on agronomic production worldwide, is both aphid and seed transmitted. Although the mechanisms of aphid transmission have been widely studied, those underlying the ability of CMV to survive and remain infectious during the passage from one generation to the next through the seeds are still to be clarified. Moreover, the viral determinants of seed transmission rate are poorly understood. Three viral genotypes produced from same RNA 1 and 2 components of CMV-Fny but differing in RNA 3 (the wild type CMV-Fny, a pseudorecombinant CMV-Fny/CMV-S and a chimeric CMV previously obtained by our group, named F, FS and CS, respectively) were propagated in Nicotiana tabacum cv Xanthi plants in order to assess differences in tobacco seed transmission rate and persistence through plant generations in the absence of aphid transmission. Seed-growth tests revealed CMV infection in the embryos, but not in the integuments. Seedlings from seed-growth tests showed the presence of all considered viruses but at different rates: from 4% (F, FS) to 16% (CS). Electron microscopy revealed absence (CS) of viral particles or virions without the typical central hole (F and FS). In agreement, structural characteristics of purified CMV particles, assessed by circular dichroism spectroscopy, showed anomalous spectra of nucleic acids rather than the expected nucleoproteins. These alterations resulted in no seed transmission beyond the first plant generation. Altogether, the results show for the first time that correct virion assembly is needed for seed infection from the mother plant but not to seedling invasion from the seed. We propose that incorrect virion formation, self-assembly and architecture stability might be explained if during the first stages of germination and seedling development some tobacco seed factors target viral regions responsible for protein-RNA interactions.

18.
Front Oncol ; 12: 824562, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371979

RESUMO

Acute myeloid leukemia (AML) is an aggressive and heterogeneous clonal disorder of hematopoietic stem/progenitor cells (HSPCs). It is not well known how leukemia cells alter hematopoiesis promoting tumor growth and leukemic niche formation. In this study, we investigated how AML deregulates the hematopoietic process of HSPCs through the release of extracellular vesicles (EVs). First, we found that AML cells released a heterogeneous population of EVs containing microRNAs involved in AML pathogenesis. Notably, AML-EVs were able to influence the fate of HSPCs modifying their transcriptome. In fact, gene expression profile of AML-EV-treated HSPCs identified 923 down- and 630 up-regulated genes involved in hematopoiesis/differentiation, inflammatory cytokine production and cell movement. Indeed, most of the down-regulated genes are targeted by AML-EV-derived miRNAs. Furthermore, we demonstrated that AML-EVs were able to affect HSPC phenotype, modifying several biological functions, such as inhibiting cell differentiation and clonogenicity, activating inflammatory cytokine production and compromising cell movement. Indeed, a redistribution of HSPC populations was observed in AML-EV treated cells with a significant increase in the frequency of common myeloid progenitors and a reduction in granulocyte-macrophage progenitors and megakaryocyte-erythroid progenitors. This effect was accompanied by a reduction in HSPC colony formation. AML-EV treatment of HSPCs increased the levels of CCL3, IL-1B and CSF2 cytokines, involved in the inflammatory process and in cell movement, and decreased CXCR4 expression associated with a reduction of SDF-1 mediated-migration. In conclusion, this study demonstrates the existence of a powerful communication between AML cells and HSPCs, mediated by EVs, which suppresses normal hematopoiesis and potentially contributes to create a leukemic niche favorable to neoplastic development.

19.
Viruses ; 14(11)2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36366553

RESUMO

Erwinia amylovora is a quarantine phytopathogenic bacterium that is the causal agent of fire blight, a destructive disease responsible for killing millions of fruit-bearing plants worldwide, including apple, pear, quince, and raspberry. Efficient and sustainable control strategies for this serious bacterial disease are still lacking, and traditional methods are limited to the use of antibiotics and some basic agricultural practices. This study aimed to contribute to the development of a sustainable control strategy through the identification, characterization, and application of bacteriophages (phages) able to control fire blight on pears. Phages isolated from wastewater collected in the Apulia region (southern Italy) were characterized and evaluated as antibacterial agents to treat experimental fire blight caused by E. amylovora. Transmission electron microscopy (TEM) conducted on purified phages (named EP-IT22 for Erwinia phage IT22) showed particles with icosahedral heads of ca. 90 ± 5 nm in length and long contractile tails of 100 ± 10 nm, typical of the Myoviridae family. Whole genome sequencing (WGS), assembly, and analysis of the phage DNA generated a single contig of 174.346 bp representing a complete circular genome composed of 310 open reading frames (ORFs). EP-IT22 was found to be 98.48% identical to the Straboviridae Erwinia phage Cronus (EPC) (GenBank Acc. n° NC_055743) at the nucleotide level. EP-IT22 was found to be resistant to high temperatures (up to 60 °C) and pH values between 4 and 11, and was able to accomplish a complete lytic cycle within one hour. Furthermore, the viability-qPCR and turbidity assays showed that EP-IT22 (MOI = 1) lysed 94% of E. amylovora cells in 20 h. The antibacterial activity of EP-IT22 in planta was evaluated in E. amylovora-inoculated pear plants that remained asymptomatic 40 days post inoculation, similarly to those treated with streptomycin sulphate. This is the first description of the morphological, biological, and molecular features of EP-IT22, highlighting its promising potential for biocontrol of E. amylovora against fire blight disease.


Assuntos
Bacteriófagos , Erwinia amylovora , Malus , Erwinia amylovora/genética , Bacteriófagos/genética , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Myoviridae/genética
20.
Plants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616240

RESUMO

Antimicrobial peptides (AMPs) are a various group of molecules found in a wide range of organisms and act as a defense mechanism against different kinds of infectious pathogens (bacteria, viruses, and fungi, etc.). This study explored the antibacterial activity of nine candidates reported in the literature for their effect on human and animal bacteria, (i.e., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) against Erwinia amylovora (E. amylovora), the causal agent of fire blight disease on pome fruits. The antibacterial activity of these peptides against E. amylovora was evaluated in vitro using viable-quantitative PCR (v-qPCR), fluorescence microscopy (FM), optical density (OD), and transmission electron microscopy (TEM), while the in vivo control efficacy was evaluated in treating experimental fire blight on pear fruits. With a view to their safe and ecofriendly field use in the future, the study also used animal and plant eukaryotic cells to evaluate the possible toxicity of these AMPs. Results in vitro showed that KL29 was the most potent peptide in inhibiting E. amylovora cell proliferation. In addition, the results of v-qPCR, FM, and TEM showed that KL29 has a bifunctional mechanism of action (lytic and non-lytic) when used at different concentrations against E. amylovora. KL29 reduced fire blight symptoms by 85% when applied experimentally in vivo. Furthermore, it had no impact on animal or plant cells, thus demonstrating its potential for safe use as an antibacterial agent. This study sheds light on a new and potent antibacterial peptide for E. amylovora and its modes of action, which could be exploited to develop sustainable treatments for fire blight.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA