RESUMO
Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals; the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%) and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%) and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%) and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P = 0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%), motor delay with non-ambulance (64%), and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P = 0.003), non-ambulance (P = 0.035), ongoing enteral feeds (P < 0.001) and cortical visual impairment (P = 0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs, provide insights into their neurological basis, and vitally, enable meaningful genetic counselling for affected individuals and their families.
Assuntos
Glicosilfosfatidilinositóis , Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Estudos Retrospectivos , Lactente , Adulto , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/genética , Deficiência Intelectual/genética , Deficiências do Desenvolvimento/genética , Adulto Jovem , Defeitos Congênitos da Glicosilação/genética , Fenótipo , Convulsões/genéticaRESUMO
OBJECTIVE: The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy. METHODS: We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician. RESULTS: A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants. SIGNIFICANCE: Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG.
Assuntos
Encefalopatias , Epilepsia Generalizada , Epilepsia , Deficiência Intelectual , Humanos , Estudos Retrospectivos , Hipotonia Muscular , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/complicações , Encefalopatias/genética , Convulsões/complicações , Epilepsia Generalizada/complicações , Eletroencefalografia/métodos , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Proteína 4 Homóloga a Disks-Large/genéticaRESUMO
OBJECTIVE: Perampanel, an antiseizure drug with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist properties, may have a targeted effect in genetic epilepsies with overwhelming glutamate receptor activation. Epilepsies with loss of γ-aminobutyric acid inhibition (e.g., SCN1A), overactive excitatory neurons (e.g., SCN2A, SCN8A), and variants in glutamate receptors (e.g., GRIN2A) hold special interest. We aimed to collect data from a large rare genetic epilepsy cohort treated with perampanel, to detect possible subgroups with high efficacy. METHODS: This multicenter project was based on the framework of NETRE (Network for Therapy in Rare Epilepsies), a web of pediatric neurologists treating rare epilepsies. Retrospective data from patients with genetic epilepsies treated with perampanel were collected. Outcome measures were responder rate (50% seizure reduction), and percentage of seizure reduction after 3 months of treatment. Subgroups of etiologies with high efficacy were identified. RESULTS: A total of 137 patients with 79 different etiologies, aged 2 months to 61 years (mean = 15.48 ± 9.9 years), were enrolled. The mean dosage was 6.45 ± 2.47 mg, and treatment period was 2.0 ± 1.78 years (1.5 months-8 years). Sixty-two patients (44.9%) were treated for >2 years. Ninety-eight patients (71%) were responders, and 93 (67.4%) chose to continue therapy. The mean reduction in seizure frequency was 56.61% ± 34.36%. Sixty patients (43.5%) sustained >75% reduction in seizure frequency, including 38 (27.5%) with >90% reduction in seizure frequency. The following genes showed high treatment efficacy: SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, POLG1, POLG2, and NEU1. Eleven of 17 (64.7%) patients with Dravet syndrome due to an SCN1A pathogenic variant were responders to perampanel treatment; 35.3% of them had >90% seizure reduction. Other etiologies remarkable for >90% reduction in seizures were GNAO1 and PIGA. Fourteen patients had a continuous spike and wave during sleep electroencephalographic pattern, and in six subjects perampanel reduced epileptiform activity. SIGNIFICANCE: Perampanel demonstrated high safety and efficacy in patients with rare genetic epilepsies, especially in SCN1A, GNAO1, PIGA, PCDH19, SYNGAP1, CDKL5, NEU1, and POLG, suggesting a targeted effect related to glutamate transmission.
Assuntos
Epilepsias Parciais , Epilepsia , Criança , Humanos , Epilepsias Parciais/tratamento farmacológico , Anticonvulsivantes/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento , Epilepsia/tratamento farmacológico , Epilepsia/genética , Epilepsia/induzido quimicamente , Convulsões/tratamento farmacológico , Piridonas/efeitos adversos , Ácido Glutâmico , Protocaderinas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTPRESUMO
Biallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense. Missense variants may give a milder phenotype by changing the local structure of ZF motifs as suggested by protein modeling; but this correlation should be validated in larger cohorts and pathogenicity of the missense variants should be investigated with functional studies. Clinical features of the 35 individuals suggest that biallelic ZNF142 variants lead to a syndromic neurodevelopmental disorder with mild to moderate ID, varying degrees of delay in language and gross motor development, early onset seizures, hypotonia, behavioral features, movement disorders, and facial dysmorphism. The differences in symptom frequencies observed in the unpublished individuals compared to those of published, and recognition of previously underemphasized facial features are likely to be due to the small sizes of the previous cohorts, which underlines the importance of larger cohorts for the phenotype descriptions of rare genetic disorders.
Assuntos
Deficiência Intelectual , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Fatores de Transcrição , Humanos , Deficiência Intelectual/diagnóstico , Transtornos dos Movimentos/complicações , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/complicações , Convulsões/genética , Fatores de Transcrição/genéticaRESUMO
Chorea is considered a nonthrombotic manifestation of the antiphospholipid syndrome, often preceding thrombotic events in children. It can be present in up to 5% of pediatric patients with antiphospholipid syndrome. Immunomodulatory treatment regimens seem to be successful in these patients, emphasizing the underlying immunological etiology. Corticosteroids are considered first-line treatment, but chorea tends to be therapy-resistant and guidelines about second-line therapy in children are solely based on small case studies. We present a case of a therapy-resistant chorea, successfully treated with rituximab. Furthermore, we give an overview of the existing literature concerning rituximab for the treatment of chorea in children. Our findings indicate that rituximab can be considered a safe option to treat antiphospholipid syndrome-related chorea in children.
Assuntos
Síndrome Antifosfolipídica , Coreia , Corticosteroides , Síndrome Antifosfolipídica/complicações , Síndrome Antifosfolipídica/tratamento farmacológico , Criança , Coreia/tratamento farmacológico , Coreia/etiologia , Humanos , Rituximab/uso terapêuticoRESUMO
The implementation of whole exome sequencing (WES) has had a major impact on the diagnostic yield of genetic testing in individuals with epilepsy. The identification of a genetic etiology paves the way to precision medicine: an individualized treatment approach, based on the disease pathophysiology. The aim of this retrospective cohort study was to: (1) determine the diagnostic yield of WES in a heterogeneous cohort of individuals with epilepsy referred for genetic testing in a real-world clinical setting, (2) investigate the influence of epilepsy characteristics on the diagnostic yield, (3) determine the theoretical yield of treatment changes based on genetic diagnosis and (4) explore the barriers to implementation of precision medicine. WES was performed in 247 individuals with epilepsy, aged between 7 months and 68 years. In 34/247 (14 %) a (likely) pathogenic variant was identified. In 7/34 (21 %) of these individuals the variant was found using a HPO-based filtering. Diagnostic yield was highest for individuals with an early onset of epilepsy (39 %) or in those with a developmental and epileptic encephalopathy (34 %). Precision medicine was a theoretical possibility in 20/34 (59 %) of the individuals with a (likely) pathogenic variant but implemented in only 11/34 (32 %). The major barrier to implementation of precision treatment was the limited availability or reimbursement of a given drug. These results confirm the potential impact of genetic analysis on treatment choices, but also highlight the hurdles to the implementation of precision medicine. To optimize precision medicine in real-world practice, additional endeavors are needed: unifying definitions of precision medicine, establishment of publicly accessible databases that include data on the functional effect of gene variants, increasing availability and reimbursement of precision therapeutics, and broadening access to innovative clinical trials.
Assuntos
Epilepsia Generalizada , Epilepsia , Humanos , Lactente , Medicina de Precisão , Estudos Retrospectivos , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Testes Genéticos/métodos , Epilepsia Generalizada/genéticaRESUMO
Paradoxical reactions in central nervous system tuberculosis (CNS-TB) are associated with significant morbidity and mortality. We describe 4 HIV-uninfected children treated for CNS-TB with severe paradoxical reactions unresponsive to corticosteroids. All made recovery after treatment with infliximab, highlighting the safety and effectiveness of infliximab for this complication, and need for prospective trials.