Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 43(13): 4158-4173, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35662331

RESUMO

Grey matter involvement is a well-known feature in sporadic Creutzfeldt-Jakob disease (sCJD), yet precise anatomy-based quantification of reduced diffusivity is still not fully understood. Default Mode Network (DMN) areas have been recently demonstrated as selectively involved in sCJD, and functional connectivity has never been investigated in prion diseases. We analyzed the grey matter involvement using a quantitatively multi-parametric MRI approach. Specifically, grey matter mean diffusivity of 37 subjects with sCJD was compared with that of 30 age-matched healthy controls with a group-wise approach. Differences in mean diffusivity were also examined between the cortical (MM(V)1, MM(V)2C, and VV1) and subcortical (VV2 and MV2K) subgroups of sCJD for those with autopsy data available (n = 27, 73%). We also assessed resting-state functional connectivity of both ventral and dorsal components of DMN in a subset of subject with a rs-fMRI dataset available (n = 17). Decreased diffusivity was predominantly present in posterior cortical regions of the DMN, but also outside of the DMN in temporal areas and in a few limbic and frontal areas, in addition to extensive deep nuclei involvement. Both subcortical and cortical sCJD subgroups showed decreased diffusivity subcortically, whereas only the cortical type expressed significantly decreased diffusivity cortically, mainly in parietal, occipital, and medial-inferior temporal cortices bilaterally. Interestingly, we found abnormally increased connectivity in both dorsal and ventral components of the DMN in sCJD subjects compared with healthy controls. The significance and possible utility of functional imaging as a biomarker for tracking disease progression in prion disease needs to be explored further.


Assuntos
Síndrome de Creutzfeldt-Jakob , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/patologia , Rede de Modo Padrão , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética
2.
Proc Natl Acad Sci U S A ; 111(28): 10329-34, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982137

RESUMO

An increasing number of studies continue to show that the amyloid ß (Aß) peptide adopts an alternative conformation and acquires transmissibility; hence, it becomes a prion. Here, we report on the attributes of two strains of Aß prions formed from synthetic Aß peptides composed of either 40 or 42 residues. Modifying the conditions for Aß polymerization increased both the protease resistance and prion infectivity compared with an earlier study. Approximately 150 d after intracerebral inoculation, both synthetic Aß40 and Aß42 prions produced a sustained rise in the bioluminescence imaging signal in the brains of bigenic Tg(APP23:Gfap-luc) mice, indicative of astrocytic gliosis. Pathological investigations showed that synthetic Aß40 prions produced amyloid plaques containing both Aß40 and Aß42 in the brains of inoculated bigenic mice, whereas synthetic Aß42 prions stimulated the formation of smaller, more numerous plaques composed predominantly of Aß42. Synthetic Aß40 preparations consisted of long straight fibrils; in contrast, the Aß42 fibrils were much shorter. Addition of 3.47 mM (0.1%) SDS to the polymerization reaction produced Aß42 fibrils that were indistinguishable from Aß40 fibrils produced in the absence or presence of SDS. Moreover, the Aß amyloid plaques in the brains of bigenic mice inoculated with Aß42 prions prepared in the presence of SDS were similar to those found in mice that received Aß40 prions. From these results, we conclude that the composition of Aß plaques depends on the conformation of the inoculated Aß polymers, and thus, these inocula represent distinct synthetic Aß prion strains.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Encéfalo/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Príons , Animais , Humanos , Camundongos Transgênicos , Fatores de Tempo
3.
Proc Natl Acad Sci U S A ; 111(28): 10323-8, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24982139

RESUMO

An increasing number of studies argues that self-propagating protein conformations (i.e., prions) feature in the pathogenesis of several common neurodegenerative diseases. Mounting evidence contends that aggregates of the amyloid-ß (Aß) peptide become self-propagating in Alzheimer's disease (AD) patients. An important characteristic of prions is their ability to replicate distinct strains, the biological information for which is enciphered within different conformations of protein aggregates. To investigate whether distinct strains of Aß prions can be discerned in AD patients, we performed transmission studies in susceptible transgenic mice using brain homogenates from sporadic or heritable (Arctic and Swedish) AD cases. Mice inoculated with the Arctic AD sample exhibited a pathology that could be distinguished from mice inoculated with the Swedish or sporadic AD samples, which was judged by differential accumulation of Aß isoforms and the morphology of cerebrovascular Aß deposition. Unlike Swedish AD- or sporadic AD-inoculated animals, Arctic AD-inoculated mice, like Arctic AD patients, displayed a prominent Aß38-containing cerebral amyloid angiopathy. The divergent transmission behavior of the Arctic AD sample compared with the Swedish and sporadic AD samples was maintained during second passage in mice, showing that Aß strains are serially transmissible. We conclude that at least two distinct strains of Aß prions can be discerned in the brains of AD patients and that strain fidelity was preserved on serial passage in mice. Our results provide a potential explanation for the clinical and pathological heterogeneity observed in AD patients.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Encéfalo/metabolismo , Príons , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Humanos , Camundongos , Camundongos Transgênicos
4.
PLoS Pathog ; 10(4): e1003990, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24699458

RESUMO

Bank voles are uniquely susceptible to a wide range of prion strains isolated from many different species. To determine if this enhanced susceptibility to interspecies prion transmission is encoded within the sequence of the bank vole prion protein (BVPrP), we inoculated Tg(M109) and Tg(I109) mice, which express BVPrP containing either methionine or isoleucine at polymorphic codon 109, with 16 prion isolates from 8 different species: humans, cattle, elk, sheep, guinea pigs, hamsters, mice, and meadow voles. Efficient disease transmission was observed in both Tg(M109) and Tg(I109) mice. For instance, inoculation of the most common human prion strain, sporadic Creutzfeldt-Jakob disease (sCJD) subtype MM1, into Tg(M109) mice gave incubation periods of ∼200 days that were shortened slightly on second passage. Chronic wasting disease prions exhibited an incubation time of ∼250 days, which shortened to ∼150 days upon second passage in Tg(M109) mice. Unexpectedly, bovine spongiform encephalopathy and variant CJD prions caused rapid neurological dysfunction in Tg(M109) mice upon second passage, with incubation periods of 64 and 40 days, respectively. Despite the rapid incubation periods, other strain-specified properties of many prion isolates--including the size of proteinase K-resistant PrPSc, the pattern of cerebral PrPSc deposition, and the conformational stability--were remarkably conserved upon serial passage in Tg(M109) mice. Our results demonstrate that expression of BVPrP is sufficient to engender enhanced susceptibility to a diverse range of prion isolates, suggesting that BVPrP may be a universal acceptor for prions.


Assuntos
Arvicolinae/metabolismo , Proteínas PrPSc/metabolismo , Animais , Arvicolinae/genética , Encéfalo/metabolismo , Encéfalo/patologia , Bovinos , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Cricetinae , Encefalopatia Espongiforme Bovina/genética , Encefalopatia Espongiforme Bovina/metabolismo , Encefalopatia Espongiforme Bovina/patologia , Cobaias , Humanos , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/genética , Ovinos
5.
Ann Neurol ; 78(4): 540-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26094969

RESUMO

OBJECTIVE: Mutations in the gene encoding the prion protein (PrP) are responsible for approximately 10 to 15% of cases of prion disease in humans, including Creutzfeldt-Jakob disease (CJD). Here, we report on the discovery of a previously unreported C-terminal PrP mutation (A224V) in a CJD patient exhibiting a disease similar to the rare VV1 subtype of sporadic (s) CJD and investigate the role of this mutation in prion replication and transmission. METHODS: We generated transgenic (Tg) mice expressing human PrP with the V129 polymorphism and A224V mutation, denoted Tg(HuPrP,V129,A224V) mice, and inoculated them with different subtypes of sCJD prions. RESULTS: Transmission of sCJD VV2 or MV2 prions was accelerated in Tg(HuPrP,V129,A224V) mice, compared to Tg(HuPrP,V129) mice, with incubation periods of ∼110 and ∼210 days, respectively. In contrast, sCJD MM1 prions resulted in longer incubation periods in Tg(HuPrP,V129,A224V) mice, compared to Tg(HuPrP,V129) mice (∼320 vs. ∼210 days). Prion strain fidelity was maintained in Tg(HuPrP,V129,A224V) mice inoculated with sCJD VV2 or MM1 prions, despite the altered replication kinetics. INTERPRETATION: Our results suggest that A224V is a risk factor for prion disease and modulates the transmission behavior of CJD prions in a strain-specific manner, arguing that residues near the C-terminus of PrP are important for controlling the kinetics of prion replication.


Assuntos
Encéfalo/patologia , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Mutação/genética , Proteínas PrPSc/genética , Animais , Cricetinae , Feminino , Humanos , Mesocricetus , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fragmentos de Peptídeos/genética , Príons/genética
6.
Proc Natl Acad Sci U S A ; 110(44): E4160-9, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24128760

RESUMO

There is not a single pharmaceutical that halts or even slows any neurodegenerative disease. Mounting evidence shows that prions cause many neurodegenerative diseases, and arguably, scrapie and Creutzfeldt-Jakob disease prions represent the best therapeutic targets. We report here that the previously identified 2-aminothiazoles IND24 and IND81 doubled the survival times of scrapie-infected, wild-type mice. However, mice infected with Rocky Mountain Laboratory (RML) prions, a scrapie-derived strain, and treated with IND24 eventually exhibited neurological dysfunction and died. We serially passaged their brain homogenates in mice and cultured cells. We found that the prion strain isolated from IND24-treated mice, designated RML[IND24], emerged during a single passage in treated mice. Although RML prions infect both the N2a and CAD5 cell lines, RML[IND24] prions could only infect CAD5 cells. When passaged in CAD5 cells, the prions remained resistant to high concentrations of IND24. However, one passage of RML[IND24] prions in untreated mice restored susceptibility to IND24 in CAD5 cells. Although IND24 treatment extended the lives of mice propagating different prion strains, including RML, another scrapie-derived prion strain ME7, and chronic wasting disease, it was ineffective in slowing propagation of Creutzfeldt-Jakob disease prions in transgenic mice. Our studies demonstrate that prion strains can acquire resistance upon exposure to IND24 that is lost upon passage in mice in the absence of IND24. These data suggest that monotherapy can select for resistance, thus intermittent therapy with mixtures of antiprion compounds may be required to slow or stop neurodegeneration.


Assuntos
Resistência a Medicamentos/genética , Doenças Neurodegenerativas/tratamento farmacológico , Príons/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Encéfalo/patologia , Linhagem Celular , Primers do DNA/genética , Descoberta de Drogas , Feminino , Humanos , Immunoblotting , Medições Luminescentes , Camundongos , Príons/genética
7.
Proc Natl Acad Sci U S A ; 110(48): 19555-60, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218576

RESUMO

Prions are proteins that adopt alternative conformations, which become self-propagating. Increasing evidence argues that prions feature in the synucleinopathies that include Parkinson's disease, Lewy body dementia, and multiple system atrophy (MSA). Although TgM83(+/+) mice homozygous for a mutant A53T α-synuclein transgene begin developing CNS dysfunction spontaneously at ∼10 mo of age, uninoculated TgM83(+/-) mice (hemizygous for the transgene) remain healthy. To determine whether MSA brains contain α-synuclein prions, we inoculated the TgM83(+/-) mice with brain homogenates from two pathologically confirmed MSA cases. Inoculated TgM83(+/-) mice developed progressive signs of neurologic disease with an incubation period of ∼100 d, whereas the same mice inoculated with brain homogenates from spontaneously ill TgM83(+/+) mice developed neurologic dysfunction in ∼210 d. Brains of MSA-inoculated mice exhibited prominent astrocytic gliosis and microglial activation as well as widespread deposits of phosphorylated α-synuclein that were proteinase K sensitive, detergent insoluble, and formic acid extractable. Our results provide compelling evidence that α-synuclein aggregates formed in the brains of MSA patients are transmissible and, as such, are prions. The MSA prion represents a unique human pathogen that is lethal upon transmission to Tg mice and as such, is reminiscent of the prion causing kuru, which was transmitted to chimpanzees nearly 5 decades ago.


Assuntos
Transmissão de Doença Infecciosa , Atrofia de Múltiplos Sistemas/metabolismo , Príons/metabolismo , alfa-Sinucleína/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/patologia , alfa-Sinucleína/genética
8.
J Infect Dis ; 212 Suppl 1: S17-25, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26116725

RESUMO

Treatment with the 2-aminothiazole IND24 extended the survival of mice infected with mouse-adapted scrapie but also resulted in the emergence of a drug-resistant prion strain. Here, we determined whether IND24 extended the survival of transgenic mice infected with prions that caused scrapie in sheep or prions that caused chronic wasting disease (CWD; hereafter "CWD prions") in deer, using 2 isolates for each disease. IND24 doubled the incubation times for mice infected with CWD prions but had no effect on the survival of those infected with scrapie prions. Biochemical, neuropathologic, and cell culture analyses were used to characterize prion strain properties following treatment, and results indicated that the CWD prions were not altered by IND24, regardless of survival extension. These results suggest that IND24 may be a viable candidate for treating CWD in infected captive cervid populations and raise questions about why some prion strains develop drug resistance whereas others do not.


Assuntos
Tiazóis/uso terapêutico , Doença de Emaciação Crônica/tratamento farmacológico , Animais , Encéfalo/patologia , Linhagem Celular , Cervos , Resistência a Medicamentos/efeitos dos fármacos , Feminino , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Príons/metabolismo , Coelhos , Scrapie/tratamento farmacológico , Scrapie/mortalidade , Ovinos , Tiazóis/farmacologia , Doença de Emaciação Crônica/mortalidade
9.
J Pharmacol Exp Ther ; 355(1): 2-12, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26224882

RESUMO

Because no drug exists that halts or even slows any neurodegenerative disease, developing effective therapeutics for any prion disorder is urgent. We recently reported two compounds (IND24 and IND81) with the 2-aminothiazole (2-AMT) chemical scaffold that almost doubled the incubation times in scrapie prion-infected, wild-type (wt) FVB mice when given in a liquid diet. Remarkably, oral prophylactic treatment with IND24 beginning 14 days prior to intracerebral prion inoculation extended survival from ∼120 days to over 450 days. In addition to IND24, we evaluated the pharmacokinetics and efficacy of five additional 2-AMTs; one was not followed further because its brain penetration was poor. Of the remaining four new 2-AMTs, IND114338 doubled and IND125 tripled the incubation times of RML-inoculated wt and Tg4053 mice overexpressing wt mouse prion protein (PrP), respectively. Neuropathological examination of the brains from untreated controls showed a widespread deposition of self-propagating, ß-sheet-rich "scrapie" isoform (PrP(Sc)) prions accompanied by a profound astrocytic gliosis. In contrast, mice treated with 2-AMTs had lower levels of PrP(Sc) and associated astrocytic gliosis, with each compound resulting in a distinct pattern of deposition. Notably, IND125 prevented both PrP(Sc) accumulation and astrocytic gliosis in the cerebrum. Progressive central nervous system dysfunction in the IND125-treated mice was presumably due to the PrP(Sc) that accumulated in their brainstems. Disappointingly, none of the four new 2-AMTs prolonged the lives of mice expressing a chimeric human/mouse PrP transgene inoculated with Creutzfeldt-Jakob disease prions.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Proteínas PrPSc/metabolismo , Tiazóis/química , Tiazóis/farmacologia , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Proteínas PrPSc/genética , Scrapie/patologia , Especificidade da Espécie , Análise de Sobrevida , Taxa de Sobrevida , Tiazóis/farmacocinética , Tiazóis/uso terapêutico , Transgenes/genética , Resultado do Tratamento
10.
Brain ; 137(Pt 12): 3339-54, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25367029

RESUMO

Sporadic Creutzfeldt-Jakob disease is considered primarily a disease of grey matter, although the extent of white matter involvement has not been well described. We used diffusion tensor imaging to study the white matter in sporadic Creutzfeldt-Jakob disease compared to healthy control subjects and to correlated magnetic resonance imaging findings with histopathology. Twenty-six patients with sporadic Creutzfeldt-Jakob disease and nine age- and gender-matched healthy control subjects underwent volumetric T1-weighted and diffusion tensor imaging. Six patients had post-mortem brain analysis available for assessment of neuropathological findings associated with prion disease. Parcellation of the subcortical white matter was performed on 3D T1-weighted volumes using Freesurfer. Diffusion tensor imaging maps were calculated and transformed to the 3D-T1 space; the average value for each diffusion metric was calculated in the total white matter and in regional volumes of interest. Tract-based spatial statistics analysis was also performed to investigate the deeper white matter tracts. There was a significant reduction of mean (P=0.002), axial (P=0.0003) and radial (P=0.0134) diffusivities in the total white matter in sporadic Creutzfeldt-Jakob disease. Mean diffusivity was significantly lower in most white matter volumes of interest (P<0.05, corrected for multiple comparisons), with a generally symmetric pattern of involvement in sporadic Creutzfeldt-Jakob disease. Mean diffusivity reduction reflected concomitant decrease of both axial and radial diffusivity, without appreciable changes in white matter anisotropy. Tract-based spatial statistics analysis showed significant reductions of mean diffusivity within the white matter of patients with sporadic Creutzfeldt-Jakob disease, mainly in the left hemisphere, with a strong trend (P=0.06) towards reduced mean diffusivity in most of the white matter bilaterally. In contrast, by visual assessment there was no white matter abnormality either on T2-weighted or diffusion-weighted images. Widespread reduction in white matter mean diffusivity, however, was apparent visibly on the quantitative attenuation coefficient maps compared to healthy control subjects. Neuropathological analysis showed diffuse astrocytic gliosis and activated microglia in the white matter, rare prion deposition and subtle subcortical microvacuolization, and patchy foci of demyelination with no evident white matter axonal degeneration. Decreased mean diffusivity on attenuation coefficient maps might be associated with astrocytic gliosis. We show for the first time significant global reduced mean diffusivity within the white matter in sporadic Creutzfeldt-Jakob disease, suggesting possible primary involvement of the white matter, rather than changes secondary to neuronal degeneration/loss.


Assuntos
Síndrome de Creutzfeldt-Jakob/patologia , Fibras Nervosas Mielinizadas/patologia , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Anisotropia , Doenças Desmielinizantes/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Substância Cinzenta/patologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Neuroimagem
11.
Nature ; 461(7263): 529-32, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19741608

RESUMO

Infectious prion diseases-scrapie of sheep and chronic wasting disease (CWD) of several species in the deer family-are transmitted naturally within affected host populations. Although several possible sources of contagion have been identified in excretions and secretions from symptomatic animals, the biological importance of these sources in sustaining epidemics remains unclear. Here we show that asymptomatic CWD-infected mule deer (Odocoileus hemionus) excrete CWD prions in their faeces long before they develop clinical signs of prion disease. Intracerebral inoculation of irradiated deer faeces into transgenic mice overexpressing cervid prion protein (PrP) revealed infectivity in 14 of 15 faecal samples collected from five deer at 7-11 months before the onset of neurological disease. Although prion concentrations in deer faeces were considerably lower than in brain tissue from the same deer collected at the end of the disease, the estimated total infectious dose excreted in faeces by an infected deer over the disease course may approximate the total contained in a brain. Prolonged faecal prion excretion by infected deer provides a plausible natural mechanism that might explain the high incidence and efficient horizontal transmission of CWD within deer herds, as well as prion transmission among other susceptible cervids.


Assuntos
Cervos/metabolismo , Fezes/química , Proteínas PrPSc/metabolismo , Proteínas PrPSc/patogenicidade , Doença de Emaciação Crônica/metabolismo , Doença de Emaciação Crônica/transmissão , Administração Oral , Animais , Bioensaio , Encéfalo/metabolismo , Injeções Intraventriculares , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/isolamento & purificação , Proteínas PrPSc/efeitos da radiação , Fatores de Tempo
12.
Proc Natl Acad Sci U S A ; 109(9): 3498-503, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22331873

RESUMO

Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD.


Assuntos
Arvicolinae/genética , Modelos Animais de Doenças , Doenças Priônicas/genética , Príons/genética , Sequência de Aminoácidos , Animais , Encéfalo/patologia , Química Encefálica , Códon/genética , Genes Reporter , Proteína Glial Fibrilar Ácida , Especificidade de Hospedeiro , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Doenças Priônicas/patologia , Doenças Priônicas/transmissão , Príons/química , Regiões Promotoras Genéticas , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Extratos de Tecidos/toxicidade
13.
Proc Natl Acad Sci U S A ; 109(27): 11025-30, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22711819

RESUMO

The aggregation and deposition of amyloid-ß (Aß) peptides are believed to be central events in the pathogenesis of Alzheimer's disease (AD). Inoculation of brain homogenates containing Aß aggregates into susceptible transgenic mice accelerated Aß deposition, suggesting that Aß aggregates are capable of self-propagation and hence might be prions. Recently, we demonstrated that Aß deposition can be monitored in live mice using bioluminescence imaging (BLI). Here, we use BLI to probe the ability of Aß aggregates to self-propagate following inoculation into bigenic mice. We report compelling evidence that Aß aggregates are prions by demonstrating widespread cerebral ß-amyloidosis induced by inoculation of either purified Aß aggregates derived from brain or aggregates composed of synthetic Aß. Although synthetic Aß aggregates were sufficient to induce Aß deposition in vivo, they exhibited lower specific biological activity compared with brain-derived Aß aggregates. Our results create an experimental paradigm that should lead to identification of self-propagating Aß conformations, which could represent novel targets for interrupting the spread of Aß deposition in AD patients.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/síntese química , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Príons/síntese química , Príons/metabolismo , Envelhecimento/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/isolamento & purificação , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Luciferases/genética , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/metabolismo , Príons/genética , Príons/isolamento & purificação
14.
Am J Pathol ; 182(3): 866-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23438476

RESUMO

Prion diseases are neurodegenerative disorders characterized by the aberrant folding of endogenous proteins into self-propagating pathogenic conformers. Prion disease can be initiated in animal models by inoculation with amyloid fibrils formed from bacterially derived recombinant prion protein. The synthetic prions that accumulated in infected organisms are structurally distinct from the amyloid preparations used to initiate their formation and change conformationally on repeated passage. To investigate the nature of synthetic prion transformation, we infected mice with a conformationally diverse set of amyloids and serially passaged the resulting prion strains. At each passage, we monitored changes in the biochemical and biological properties of the adapting strain. The physicochemical properties of each synthetic prion strain gradually changed on serial propagation until attaining a common adapted state with shared physicochemical characteristics. These results indicate that synthetic prions can assume multiple intermediate conformations before converging into one conformation optimized for in vivo propagation.


Assuntos
Príons/metabolismo , Amiloide/metabolismo , Animais , Western Blotting , Células Cultivadas , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Príons/química , Príons/patogenicidade , Conformação Proteica
15.
Proc Natl Acad Sci U S A ; 108(6): 2528-33, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21262831

RESUMO

Transgenic (Tg) mouse models of Alzheimer's disease have served as valuable tools for investigating pathogenic mechanisms related to Aß accumulation. However, assessing disease status in these animals has required time-consuming behavioral assessments or postmortem neuropathological analysis. Here, we report a method for tracking the progression of Aß accumulation in vivo using bioluminescence imaging (BLI) on two lines of Tg mice, which express luciferase (luc) under control of the Gfap promoter as well as mutant human amyloid precursor protein. Bigenic mice exhibited an age-dependent increase in BLI signals that correlated with the deposition of Aß in the brain. Bioluminescence signals began to increase in 7-mo-old Tg(CRND8:Gfap-luc) mice and 14-mo-old Tg(APP23:Gfap-luc) mice. When Tg(APP23:Gfap-luc) mice were inoculated with brain homogenates from aged Tg(APP23) mice, BLI detected the accelerated disease onset and induced Aß deposition at 11 mo of age. Because of its rapid, noninvasive, and quantitative format, BLI permits the objective repeated analysis of individual mice at multiple time points, which is likely to facilitate the testing of Aß-directed therapeutics.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Diagnóstico por Imagem , Modelos Animais de Doenças , Luciferases , Luminescência , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Proteína Glial Fibrilar Ácida , Humanos , Luciferases/genética , Luciferases/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas/genética
16.
Proc Natl Acad Sci U S A ; 108(52): 21223-8, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160704

RESUMO

Some prion protein mutations create anchorless molecules that cause Gerstmann-Sträussler-Scheinker (GSS) disease. To model GSS, we generated transgenic mice expressing cellular prion protein (PrP(C)) lacking the glycosylphosphatidyl inositol (GPI) anchor, denoted PrP(ΔGPI). Mice overexpressing PrP(ΔGPI) developed a late-onset, spontaneous neurologic dysfunction characterized by widespread amyloid deposition in the brain and the presence of a short protease-resistant PrP fragment similar to those found in GSS patients. In Tg(PrP,ΔGPI) mice, disease onset could be accelerated either by inoculation with brain homogenate prepared from spontaneously ill animals or by coexpression of membrane-anchored, full-length PrP(C). In contrast, coexpression of N-terminally truncated PrP(Δ23-88) did not affect disease progression. Remarkably, disease from ill Tg(PrP,ΔGPI) mice transmitted to mice expressing wild-type PrP(C), indicating the spontaneous generation of prions.


Assuntos
Amiloide/ultraestrutura , Modelos Animais de Doenças , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Doença de Gerstmann-Straussler-Scheinker/fisiopatologia , Glicosilfosfatidilinositóis/deficiência , Proteínas PrPC/metabolismo , Animais , Western Blotting , Eletroforese em Gel de Poliacrilamida , Mapeamento de Epitopos , Doença de Gerstmann-Straussler-Scheinker/genética , Doença de Gerstmann-Straussler-Scheinker/patologia , Técnicas Histológicas , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Proteínas PrPC/genética , Dobramento de Proteína
17.
J Gen Virol ; 94(Pt 2): 443-452, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23100369

RESUMO

Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.


Assuntos
Príons/biossíntese , Príons/genética , Doença de Emaciação Crônica/genética , Animais , Modelos Animais de Doenças , Período de Incubação de Doenças Infecciosas , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Ruminantes , Fatores de Tempo , Doença de Emaciação Crônica/patologia
18.
J Pharmacol Exp Ther ; 347(2): 325-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23965382

RESUMO

The only small-molecule compound demonstrated to substantially extend survival in prion-infected mice is a biaryl hydrazone termed "Compd B" (4-pyridinecarboxaldehyde,2-[4-(5-oxazolyl)phenyl]hydrazone). However, the hydrazone moiety of Compd B results in toxic metabolites, making it a poor candidate for further drug development. We developed a pharmacophore model based on diverse antiprion compounds identified by high-throughput screening; based on this model, we generated biaryl amide analogs of Compd B. Medicinal chemistry optimization led to multiple compounds with increased potency, increased brain concentrations, and greater metabolic stability, indicating that they could be promising candidates for antiprion therapy. Replacing the pyridyl ring of Compd B with a phenyl group containing an electron-donating substituent increased potency, while adding an aryl group to the oxazole moiety increased metabolic stability. To test the efficacy of Compd B, we applied bioluminescence imaging (BLI), which was previously shown to detect prion disease onset in live mice earlier than clinical signs. In our studies, Compd B showed good efficacy in two lines of transgenic mice infected with the mouse-adapted Rocky Mountain Laboratory (RML) strain of prions, but not in transgenic mice infected with human prions. The BLI system successfully predicted the efficacies in all cases long before extension in survival could be observed. Our studies suggest that this BLI system has good potential to be applied in future antiprion drug efficacy studies.


Assuntos
Amidas/química , Amidas/uso terapêutico , Hidrazonas/química , Hidrazonas/uso terapêutico , Proteínas PrPSc/patogenicidade , Doenças Priônicas/tratamento farmacológico , Amidas/síntese química , Amidas/farmacocinética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Descoberta de Drogas , Hidrazonas/síntese química , Hidrazonas/farmacocinética , Período de Incubação de Doenças Infecciosas , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Estrutura Molecular , Proteínas PrPSc/genética , Relação Estrutura-Atividade
19.
J Virol ; 86(11): 6033-41, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22438549

RESUMO

We report here the transmission of human prions to 18 new transgenic (Tg) mouse lines expressing 8 unique chimeric human/mouse prion proteins (PrP). Extracts from brains of two patients, who died of sporadic Creutzfeldt-Jakob disease (sCJD), contained either sCJD(MM1) or sCJD(VV2) prion strains and were used for inocula. Mice expressing chimeric PrP showed a direct correlation between expression level and incubation period for sCJD(MM1) prions irrespective of whether the transgene encoded methionine (M) or valine (V) at polymorphic residue 129. Tg mice expressing chimeric transgenes encoding V129 were unexpectedly resistant to infection with sCJD(VV2) prions, and when transmission did occur, it was accompanied by a change in strain type. The transmission of sCJD(MM1) prions was modulated by single amino acid reversions of each human PrP residue in the chimeric sequence. Reverting human residue 137 in the chimeric transgene from I to M prolonged the incubation time for sCJD(MM1) prions by more than 100 days; structural analyses suggest a profound change in the orientation of amino acid side chains with the I→M mutation. These findings argue that changing the surface charge in this region of PrP greatly altered the interaction between PrP isoforms during prion replication. Our studies contend that strain-specified replication of prions is modulated by PrP sequence-specific interactions between the prion precursor PrP(C) and the infectious product PrP(Sc).


Assuntos
Síndrome de Creutzfeldt-Jakob/patologia , Período de Incubação de Doenças Infecciosas , Mutação de Sentido Incorreto , Príons/genética , Príons/patogenicidade , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Príons/isolamento & purificação , Fatores de Tempo
20.
PLoS Pathog ; 7(11): e1002382, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22163178

RESUMO

The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Linhagem Celular , Regulação para Baixo , Proteínas Ligadas por GPI , Camundongos , Camundongos Transgênicos , Neurônios/enzimologia , Neurônios/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas PrPC/química , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Doenças Priônicas/veterinária , Ovinos , Doenças dos Ovinos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA