Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(1): 101183, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38282895

RESUMO

Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is a monogenic disorder caused by mutations in the FOXP3 gene, required for generation of regulatory T (Treg) cells. Loss of Treg cells leads to immune dysregulation characterized by multi-organ autoimmunity and early mortality. Hematopoietic stem cell (HSC) transplantation can be curative, but success is limited by autoimmune complications, donor availability and/or graft-vs.-host disease. Correction of FOXP3 in autologous HSC utilizing a homology-directed repair (HDR)-based platform may provide a safer alternative therapy. Here, we demonstrate efficient editing of FOXP3 utilizing co-delivery of Cas9 ribonucleoprotein complexes and adeno-associated viral vectors to achieve HDR rates of >40% in vitro using mobilized CD34+ cells from multiple donors. Using this approach to deliver either a GFP or a FOXP3 cDNA donor cassette, we demonstrate sustained bone marrow engraftment of approximately 10% of HDR-edited cells in immune-deficient recipient mice at 16 weeks post-transplant. Further, we show targeted integration of FOXP3 cDNA in CD34+ cells from an IPEX patient and expression of the introduced FOXP3 transcript in gene-edited primary T cells from both healthy individuals and IPEX patients. Our combined findings suggest that refinement of this approach is likely to provide future clinical benefit in IPEX.

2.
PLoS Pathog ; 5(1): e1000272, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19165322

RESUMO

Strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection were evaluated for the ability to elicit protective immunity against wild-type SIV(mac)239 infection of rhesus macaques by two different vaccine regimens. Six animals were inoculated at 8-week intervals with 6 identical doses consisting of a mixture of three different envelope variants of single-cycle SIV (scSIV). Six additional animals were primed with a mixture of cytoplasmic domain-truncated envelope variants of scSIV and boosted with two doses of vesicular stomatitis virus glycoprotein (VSV G) trans-complemented scSIV. While both regimens elicited detectable virus-specific T cell responses, SIV-specific T cell frequencies were more than 10-fold higher after boosting with VSV G trans-complemented scSIV (VSV G scSIV). Broad T cell recognition of multiple viral antigens and Gag-specific CD4(+) T cell responses were also observed after boosting with VSV G scSIV. With the exception of a single animal in the repeated immunization group, all of the animals became infected following an intravenous challenge with SIV(mac)239. However, significantly lower viral loads and higher memory CD4(+) T cell counts were observed in both immunized groups relative to an unvaccinated control group. Indeed, both scSIV immunization regimens resulted in containment of SIV(mac)239 replication after challenge that was as good as, if not better than, what has been achieved by other non-persisting vaccine vectors that have been evaluated in this challenge model. Nevertheless, the extent of protection afforded by scSIV was not as good as typically conferred by persistent infection with live, attenuated SIV. These observations have potentially important implications to the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may be essential to achieving the degree of protection afforded by live, attenuated SIV.


Assuntos
Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Imunização/métodos , Imunização/veterinária , Macaca mulatta/imunologia , RNA Viral/sangue , Vesiculovirus/imunologia , Carga Viral
3.
J Virol ; 82(6): 3139-46, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18199657

RESUMO

Human immunodeficiency virus type 1 (HIV-1) Nef downregulates HLA-A and -B molecules, but not HLA-C or -E molecules, based on amino acid differences in their cytoplasmic domains to simultaneously evade cytotoxic T lymphocyte (CTL) and natural killer cell surveillance. Rhesus macaques and sooty mangabeys express orthologues of HLA-A, -B, and -E, but not HLA-C, and many of these molecules have unique amino acid differences in their cytoplasmic tails. We found that these differences also resulted in differential downregulation by primary simian immunodeficiency virus (SIV) SIV(smm/mac) and HIV-2 Nef alleles. Thus, selective major histocompatibility complex class I downregulation is a conserved mechanism of immune evasion for pathogenic SIV infection of rhesus macaques and nonpathogenic SIV infection of sooty mangabeys.


Assuntos
Alelos , Regulação para Baixo , Genes Virais , Genes nef , HIV-2/genética , Antígenos de Histocompatibilidade Classe I/fisiologia , Vírus da Imunodeficiência Símia/genética , Animais , Cercocebus atys , Macaca mulatta
4.
J Virol ; 82(1): 321-34, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17942538

RESUMO

Molecular differences in the envelope glycoproteins of human immunodeficiency virus type 1 and simian immunodeficiency virus (SIV) determine virus infectivity and cellular tropism. To examine how these properties contribute to productive infection in vivo, rhesus macaques were inoculated with strains of single-cycle SIV (scSIV) engineered to express three different envelope glycoproteins with full-length (TM(open)) or truncated (TM(stop)) cytoplasmic tails. The 239 envelope uses CCR5 for infection of memory CD4(+) T cells, the 316 envelope also uses CCR5 but has enhanced infectivity for primary macrophages, and the 155T3 envelope uses CXCR4 for infection of both naive and memory CD4(+) T cells. Separate groups of six rhesus macaques were inoculated intravenously with mixtures of TM(open) and TM(stop) scSIV(mac)239, scSIV(mac)316, and scSIV(mac)155T3. A multiplex real-time PCR assay specific for unique sequence tags engineered into each virus was then used to measure viral loads for each strain independently. Viral loads in plasma peaked on day 4 for each strain and were resolved below the threshold of detection within 4 to 10 weeks. Truncation of the envelope cytoplasmic tail significantly increased the peak of viremia for all three envelope variants and the titer of SIV-specific antibody responses. Although peak viremias were similar for both R5- and X4-tropic viruses, clearance of scSIV(mac)155T3 TM(stop) was significantly delayed relative to the other strains, possibly reflecting the infection of a CXCR4(+) cell population that is less susceptible to the cytopathic effects of virus infection. These studies reveal differences in the peaks and durations of a single round of productive infection that reflect envelope-specific differences in infectivity, chemokine receptor specificity, and cellular tropism.


Assuntos
Anticorpos Antivirais/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Envelope Viral/genética , Viremia , Animais , Macaca mulatta , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Vírus da Imunodeficiência Símia/genética , Carga Viral
5.
Virology ; 373(1): 229-37, 2008 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-18155264

RESUMO

It has been demonstrated that the HIV-1 NL4-3 and IIIB Nef alleles downregulate HLA-A and -B but not -C or -E from the cell surface. It remained elusive, however, whether selective modulation of specific HLA molecules is conserved between different groups of human and simian immunodeficiency viruses, respectively. To address this, we analyzed a large panel of primate lentiviral Nef proteins and we found that this property is conserved among nef alleles from the M, N and O groups of HIV-1, as well as those from SIVcpz, the precursor of HIV-1, and a variety of other highly divergent primate lentiviruses. In conclusion, our data indicate that Nef's ability to selectively downregulate HLA-A and -B alleles to prevent CTL lysis and NK killing of virally infected cells is conserved among different primate lentiviral lineages and preceded the zoonotic transmission of SIVcpz from chimpanzees to humans.


Assuntos
Alelos , Regulação para Baixo , Produtos do Gene nef/metabolismo , Antígenos HLA-A/metabolismo , Antígenos HLA-B/metabolismo , Lentivirus de Primatas/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD8/metabolismo , Linhagem Celular , Produtos do Gene nef/química , Produtos do Gene nef/genética , HIV-1/metabolismo , Antígenos HLA-A/química , Antígenos HLA-B/química , Humanos , Células Jurkat , Células Matadoras Naturais/imunologia , Lentivirus de Primatas/classificação , Dados de Sequência Molecular , Vírus da Imunodeficiência Símia/metabolismo , Linfócitos T Citotóxicos/imunologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA