Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 615(7952): 517-525, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859545

RESUMO

Most human cells require anchorage for survival. Cell-substrate adhesion activates diverse signalling pathways, without which cells undergo anoikis-a form of programmed cell death1. Acquisition of anoikis resistance is a pivotal step in cancer disease progression, as metastasizing cells often lose firm attachment to surrounding tissue2,3. In these poorly attached states, cells adopt rounded morphologies and form small hemispherical plasma membrane protrusions called blebs4-11. Bleb function has been thoroughly investigated in the context of amoeboid migration, but it has been examined far less in other scenarios12. Here we show by three-dimensional imaging and manipulation of cell morphological states that blebbing triggers the formation of plasma membrane-proximal signalling hubs that confer anoikis resistance. Specifically, in melanoma cells, blebbing generates plasma membrane contours that recruit curvature-sensing septin proteins as scaffolds for constitutively active mutant NRAS and effectors. These signalling hubs activate ERK and PI3K-well-established promoters of pro-survival pathways. Inhibition of blebs or septins has little effect on the survival of well-adhered cells, but in detached cells it causes NRAS mislocalization, reduced MAPK and PI3K activity, and ultimately, death. This unveils a morphological requirement for mutant NRAS to operate as an effective oncoprotein. Furthermore, whereas some BRAF-mutated melanoma cells do not rely on this survival pathway in a basal state, inhibition of BRAF and MEK strongly sensitizes them to both bleb and septin inhibition. Moreover, fibroblasts engineered to sustain blebbing acquire the same anoikis resistance as cancer cells even without harbouring oncogenic mutations. Thus, blebs are potent signalling organelles capable of integrating myriad cellular information flows into concerted cellular responses, in this case granting robust anoikis resistance.


Assuntos
Anoikis , Carcinogênese , Extensões da Superfície Celular , Sobrevivência Celular , Melanoma , Transdução de Sinais , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Septinas/metabolismo , Extensões da Superfície Celular/química , Extensões da Superfície Celular/metabolismo , Carcinogênese/genética , Adesão Celular , MAP Quinases Reguladas por Sinal Extracelular , Fibroblastos , Mutação , Forma Celular , Imageamento Tridimensional , Quinases de Proteína Quinase Ativadas por Mitógeno
2.
Proc Natl Acad Sci U S A ; 120(52): e2318274120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38127982

RESUMO

Liquid-liquid phase separation (LLPS) underlies diverse biological processes. Because most LLPS studies were performed in vitro using recombinant proteins or in cells that overexpress protein, the physiological relevance of LLPS for endogenous protein is often unclear. PERIOD, the intrinsically disordered domain-rich proteins, are central mammalian circadian clock components and interact with other clock proteins in the core circadian negative feedback loop. Different core clock proteins were previously shown to form large complexes. Circadian clock studies often rely on experiments that overexpress clock proteins. Here, we show that when Per2 transgene was stably expressed in cells, PER2 protein formed nuclear phosphorylation-dependent slow-moving LLPS condensates that recruited other clock proteins. Super-resolution microscopy of endogenous PER2, however, revealed formation of circadian-controlled, rapidly diffusing nuclear microbodies that were resistant to protein concentration changes, hexanediol treatment, and loss of phosphorylation, indicating that they are distinct from the LLPS condensates caused by protein overexpression. Surprisingly, only a small fraction of endogenous PER2 microbodies transiently interact with endogenous BMAL1 and CRY1, a conclusion that was confirmed in cells and in mice tissues, suggesting an enzyme-like mechanism in the circadian negative feedback process. Together, these results demonstrate that the dynamic interactions of core clock proteins are a key feature of mammalian circadian clock mechanism and the importance of examining endogenous proteins in LLPS and circadian clock studies.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Separação de Fases , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ritmo Circadiano/genética , Microcorpos/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Mamíferos/metabolismo
3.
Nat Methods ; 19(11): 1419-1426, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280718

RESUMO

Structured illumination microscopy (SIM) doubles the spatial resolution of a fluorescence microscope without requiring high laser powers or specialized fluorophores. However, the excitation of out-of-focus fluorescence can accelerate photobleaching and phototoxicity. In contrast, light-sheet fluorescence microscopy (LSFM) largely avoids exciting out-of-focus fluorescence, thereby enabling volumetric imaging with low photobleaching and intrinsic optical sectioning. Combining SIM with LSFM would enable gentle three-dimensional (3D) imaging at doubled resolution. However, multiple orientations of the illumination pattern, which are needed for isotropic resolution doubling in SIM, are challenging to implement in a light-sheet format. Here we show that multidirectional structured illumination can be implemented in oblique plane microscopy, an LSFM technique that uses a single objective for excitation and detection, in a straightforward manner. We demonstrate isotropic lateral resolution below 150 nm, combined with lower phototoxicity compared to traditional SIM systems and volumetric acquisition speed exceeding 1 Hz.


Assuntos
Imageamento Tridimensional , Iluminação , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Fotodegradação
4.
Nat Methods ; 18(7): 829-834, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183831

RESUMO

We introduce a cost-effective and easily implementable scan unit that converts any camera-based microscope with optical sectioning capability into a multi-angle projection imaging system. Projection imaging reduces data overhead and accelerates imaging by a factor of >100, while also allowing users to readily view biological phenomena of interest from multiple perspectives on the fly. By rapidly interrogating the sample from just two perspectives, our method also enables real-time stereoscopic imaging and three-dimensional particle localization. We demonstrate projection imaging with spinning disk confocal, lattice light-sheet, multidirectional illumination light-sheet and oblique plane microscopes on specimens that range from organelles in single cells to the vasculature of a zebrafish embryo. Furthermore, we leverage our projection method to rapidly image cancer cell morphodynamics and calcium signaling in cultured neurons at rates up to 119 Hz as well as to simultaneously image orthogonal views of a beating embryonic zebrafish heart.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Animais , Colo/citologia , Embrião não Mamífero/citologia , Feminino , Coração/diagnóstico por imagem , Coração/embriologia , Humanos , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Ratos Sprague-Dawley , Esferoides Celulares/patologia , Peixe-Zebra/embriologia
5.
J Neurosci ; 42(4): 581-600, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34857649

RESUMO

Proprioception, the sense of limb and body position, generates a map of the body that is essential for proper motor control, yet we know little about precisely how neurons in proprioceptive pathways are wired. Defining the anatomy of secondary neurons in the spinal cord that integrate and relay proprioceptive and potentially cutaneous information from the periphery to the cerebellum is fundamental to understanding how proprioceptive circuits function. Here, we define the unique anatomic trajectories of long-range direct and indirect spinocerebellar pathways as well as local intersegmental spinal circuits using genetic tools in both male and female mice. We find that Clarke's column neurons, a major contributor to the direct spinocerebellar pathway, has mossy fiber terminals that diversify extensively in the cerebellar cortex with axons terminating bilaterally, but with no significant axon collaterals within the spinal cord, medulla, or cerebellar nuclei. By contrast, we find that two of the indirect pathways, the spino-lateral reticular nucleus and spino-olivary pathways, are in part, derived from cervical Atoh1-lineage neurons, whereas thoracolumbar Atoh1-lineage neurons project mostly locally within the spinal cord. Notably, while cervical and thoracolumbar Atoh1-lineage neurons connect locally with motor neurons, no Clarke's column to motor neuron connections were detected. Together, we define anatomic differences between long-range direct, indirect, and local proprioceptive subcircuits that likely mediate different components of proprioceptive-motor behaviors.SIGNIFICANCE STATEMENT We define the anatomy of long-range direct and indirect spinocerebellar pathways as well as local spinal proprioceptive circuits. We observe that mossy fiber axon terminals of Clarke's column neurons diversify proprioceptive information across granule cells in multiple lobules on both ipsilateral and contralateral sides, sending no significant collaterals within the spinal cord, medulla, or cerebellar nuclei. Strikingly, we find that cervical spinal cord Atoh1-lineage neurons form mainly the indirect spino-lateral reticular nucleus and spino-olivary tracts and thoracolumbar Atoh1-lineage neurons project locally within the spinal cord, whereas only a few Atoh1-lineage neurons form a direct spinocerebellar tract.


Assuntos
Cerebelo/fisiologia , Rede Nervosa/fisiologia , Propriocepção/fisiologia , Medula Espinal/fisiologia , Tratos Espinocerebelares/fisiologia , Animais , Animais Recém-Nascidos , Cerebelo/química , Cerebelo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/química , Rede Nervosa/citologia , Medula Espinal/química , Medula Espinal/citologia , Tratos Espinocerebelares/química , Tratos Espinocerebelares/citologia
6.
Nat Methods ; 16(3): 235-238, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804550

RESUMO

We introduce field synthesis, a theorem and method that can be used to synthesize any scanned or dithered light sheet, including those used in lattice light-sheet microscopy (LLSM), from an incoherent superposition of one-dimensional intensity distributions. Compared to LLSM, this user-friendly and modular approach offers a simplified optical design, higher light throughput and simultaneous multicolor illumination. Further, field synthesis achieves lower rates of photobleaching than light sheets generated by lateral beam scanning.


Assuntos
Luz , Microscopia de Fluorescência/métodos , Animais , Linhagem Celular Tumoral , Membrana Celular , Humanos , Microscopia de Fluorescência/instrumentação , Fotodegradação
7.
Nat Methods ; 16(10): 1037-1044, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501548

RESUMO

Rapid developments in live-cell three-dimensional (3D) microscopy enable imaging of cell morphology and signaling with unprecedented detail. However, tools to systematically measure and visualize the intricate relationships between intracellular signaling, cytoskeletal organization and downstream cell morphological outputs do not exist. Here, we introduce u-shape3D, a computer graphics and machine-learning pipeline to probe molecular mechanisms underlying 3D cell morphogenesis and to test the intriguing possibility that morphogenesis itself affects intracellular signaling. We demonstrate a generic morphological motif detector that automatically finds lamellipodia, filopodia, blebs and other motifs. Combining motif detection with molecular localization, we measure the differential association of PIP2 and KrasV12 with blebs. Both signals associate with bleb edges, as expected for membrane-localized proteins, but only PIP2 is enhanced on blebs. This indicates that subcellular signaling processes are differentially modulated by local morphological motifs. Overall, our computational workflow enables the objective, 3D analysis of the coupling of cell shape and signaling.


Assuntos
Imageamento Tridimensional/métodos , Microscopia/métodos , Frações Subcelulares/metabolismo , Linhagem Celular Tumoral , Forma Celular , Gráficos por Computador , Humanos , Aprendizado de Máquina , Transdução de Sinais
8.
Nat Methods ; 16(11): 1109-1113, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31673159

RESUMO

We present cleared-tissue axially swept light-sheet microscopy (ctASLM), which enables isotropic, subcellular resolution imaging with high optical sectioning capability and a large field of view over a broad range of immersion media. ctASLM can image live, expanded, and both aqueous and non-aqueous chemically cleared tissue preparations. Depending on the optical configuration, ctASLM provides up to 260 nm of axial resolution, a three to tenfold improvement over confocal and other reported cleared-tissue light-sheet microscopes. We imaged millimeter-scale cleared tissues with subcellular three-dimensional resolution, which enabled automated detection of multicellular tissue architectures, individual cells, synaptic spines and rare cell-cell interactions.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Camundongos , Peixe-Zebra
9.
J Am Soc Nephrol ; 32(12): 3099-3113, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34551997

RESUMO

BACKGROUND: Lymphatic abnormalities are observed in several types of kidney disease, but the relationship between the renal lymphatic system and renal function is unclear. The discovery of lymphatic-specific proteins, advances in microscopy, and available genetic mouse models provide the tools to help elucidate the role of renal lymphatics in physiology and disease. METHODS: We utilized a mouse model containing a missense mutation in Vegfr3 (dubbed Chy ) that abrogates its kinase ability. Vegfr3 Chy/+ mice were examined for developmental abnormalities and kidney-specific outcomes. Control and Vegfr3 Chy/+ mice were subjected to cisplatin-mediated injury. We characterized renal lymphatics using tissue-clearing, light-sheet microscopy, and computational analyses. RESULTS: In the kidney, VEGFR3 is expressed not only in lymphatic vessels but also, in various blood capillaries. Vegfr3 Chy/+ mice had severely reduced renal lymphatics with 100% penetrance, but we found no abnormalities in BP, serum creatinine, BUN, albuminuria, and histology. There was no difference in the degree of renal injury after low-dose cisplatin (5 mg/kg), although Vegfr3 Chy/+ mice developed perivascular inflammation. Cisplatin-treated controls had no difference in total cortical lymphatic volume and length but showed increased lymphatic density due to decreased cortical volume. CONCLUSIONS: We demonstrate that VEGFR3 is required for development of renal lymphatics. Our studies reveal that reduced lymphatic density does not impair renal function at baseline and induces only modest histologic changes after mild injury. We introduce a novel quantification method to evaluate renal lymphatics in 3D and demonstrate that accurate measurement of lymphatic density in CKD requires assessment of changes to cortical volume.


Assuntos
Cisplatino , Vasos Linfáticos , Camundongos , Animais , Sistema Linfático/fisiologia , Rim/fisiologia , Mutação , Linfangiogênese
10.
Opt Express ; 28(18): 27052-27077, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906967

RESUMO

The axial resolving power of a light-sheet microscope is determined by the thickness of the illumination beam and the numerical aperture of its detection optics. Bessel-beam based optical lattices have generated significant interest owing to their reportedly narrow beam waist and propagation-invariant characteristics. Yet, despite their significant use in lattice light-sheet microscopy and recent incorporation into commercialized systems, there are very few quantitative reports on their physical properties and how they compare to standard Gaussian illumination beams. Here, we measure the beam properties in the transmission of dithered square lattices, which is the most commonly used variant of lattice light-sheet microscopy, and Gaussian-based light-sheets. After a systematic analysis, we find that square lattices are very similar to Gaussian-based light-sheets in terms of thickness, confocal parameter, propagation length and overall imaging performance.

11.
J Chem Phys ; 150(2): 024304, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646720

RESUMO

Monatomic and molecular hydrogen and also oxygen, as well as water molecules and OH that are exposed to atomic copper in intimate contact, have been studied theoretically using computational methods. The authors optimized moderately large structures of Cu/H/Cu, Cu/HCuH/Cu, Cu/H2/Cu, Cu/H2O/Cu, Cu/OH/Cu, Cu/O/Cu, and Cu/O2/Cu and calculated appropriate values for conductance and inelastic tunneling spectroscopy (IETS) properties of the contact junctions, elucidating them as being a possible outcome resulting from the exposure of copper electrodes to the atomic/molecular contaminant species. Here we also demonstrate the IETS properties, by means of ab initio calculations, which can determine the form of the junction geometries. Furthermore, we identify the bonding geometries at the interfaces of the copper electrodes that directly give rise to the specific IETS signatures that have been observed in recent experiments. Based on low-bias conductance and IETS calculations, for the specific case of water exposure of copper electrodes, it was concluded that a single hydrogen or a single oxygen atom bridging the copper electrodes is not responsible for the high conductance peak measurements. Regarding Model 4, where an individual water molecule is considered to be the bridging constituent, our computational results suggest that it has a relatively low probability of being an appropriate candidate. Based upon current computational results, the two hydrogens in Model 3 appear to be in molecular form, although they still form a bond with the adjacent copper atoms. Comparing computational with experimental results indicates that Model 3 is in acceptable agreement with available data.

12.
Stem Cells ; 35(6): 1579-1591, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28152565

RESUMO

Müller cells are the major supportive and protective glial cells in the retina with important functions in histogenesis and synaptogenesis during development, and in maintenance of mature neurons as they show to secrete various cytokines and manifest potentials of self-renewal and transdifferentiation into retinal neurons following injury in the vertebrate retinas. The swine retina has a visual streak structure similar to the human macular where cone photoreceptors are highly concentrated, thereby can serve as a better model for studying retinal diseases and for formulating cell-based therapeutics than the rodent retinas. Like most differentiated somatic mammalian cells, the isolated swine and human Müller glia become senescent over passages in culture, which restricts their potential application in basic and clinic researches. Here, we demonstrate that the senescence of swine and human Müller cells is caused by telomere attrition upon multiplications in vitro; and the senescent cells can be rejuvenated by sphere suspension culture. We also provide evidence that sphere-induced extension of telomeres in swine and human Müller glia is achieved by alternative lengthening of telomeres or/and by telomerase activation. Stem Cells 2017;35:1579-1591.


Assuntos
Células Ependimogliais/metabolismo , Rejuvenescimento , Esferoides Celulares/citologia , Homeostase do Telômero , Telômero/metabolismo , Animais , Células Cultivadas , Senescência Celular , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Humanos , Modelos Biológicos , Células-Tronco/metabolismo , Sus scrofa , Telomerase/metabolismo
13.
Microsc Microanal ; 29(Supplement_1): 2091-2092, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37612944
15.
Biophys J ; 110(6): 1456-65, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27028654

RESUMO

In subcellular light-sheet fluorescence microscopy (LSFM) of adherent cells, glass substrates are advantageously rotated relative to the excitation and emission light paths to avoid glass-induced optical aberrations. Because cells are spread across the sample volume, three-dimensional imaging requires a light-sheet with a long propagation length, or rapid sample scanning. However, the former degrades axial resolution and/or optical sectioning, while the latter mechanically perturbs sensitive biological specimens on pliant biomimetic substrates (e.g., collagen and basement membrane). Here, we use aberration-free remote focusing to diagonally sweep a narrow light-sheet along the sample surface, enabling multicolor imaging with high spatiotemporal resolution. Further, we implement a dithered Gaussian lattice to minimize sample-induced illumination heterogeneities, significantly improving signal uniformity. Compared with mechanical sample scanning, we drastically reduce sample oscillations, allowing us to achieve volumetric imaging at speeds of up to 3.5 Hz for thousands of Z-stacks. We demonstrate the optical performance with live-cell imaging of microtubule and actin cytoskeletal dynamics, phosphoinositide signaling, clathrin-mediated endocytosis, polarized blebbing, and endocytic vesicle sorting. We achieve three-dimensional particle tracking of clathrin-associated structures with velocities up to 4.5 µm/s in a dense intracellular environment, and show that such dynamics cannot be recovered reliably at lower volumetric image acquisition rates using experimental data, numerical simulations, and theoretical modeling.


Assuntos
Imageamento Tridimensional/métodos , Microscopia/métodos , Citoesqueleto de Actina/metabolismo , Adesão Celular , Linhagem Celular , Endossomos/metabolismo , Espaço Extracelular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Transdução de Sinais
16.
Nat Chem Biol ; 10(7): 512-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24937069

RESUMO

Synergistic advances in optical physics, probe design, molecular biology, labeling techniques and computational analysis have propelled fluorescence imaging into new realms of spatiotemporal resolution and sensitivity. This review aims to discuss advances in fluorescent probes and live-cell labeling strategies, two areas that remain pivotal for future advances in imaging technology. Fluorescent protein- and bio-orthogonal-based methods for protein and RNA imaging are discussed as well as emerging bioengineering techniques that enable their expression at specific genomic loci (for example, CRISPR and TALENs). Important attributes that contribute to the success of each technique are emphasized, providing a guideline for future advances in dynamic live-cell imaging.


Assuntos
Corantes Fluorescentes/química , Proteínas Luminescentes/química , Imagem Molecular/métodos , RNA/química , Coloração e Rotulagem/métodos , Animais , Bioengenharia/instrumentação , Bioengenharia/métodos , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Fluorescência , Humanos , Luz , Modelos Moleculares , Termodinâmica , Imagem com Lapso de Tempo
17.
Biophys J ; 108(12): 2807-15, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26083920

RESUMO

The use of propagation invariant Bessel beams has enabled high-resolution subcellular light sheet fluorescence microscopy. However, the energy within the concentric side lobe structure of Bessel beams increases significantly with propagation length, generating unwanted out-of-focus fluorescence that enforces practical limits on the imaging field of view size. Here, we present a light sheet fluorescence microscope that achieves 390 nm isotropic resolution and high optical sectioning strength (i.e., out-of-focus blur is strongly suppressed) over large field of views, without the need for structured illumination or deconvolution-based postprocessing. We demonstrate simultaneous dual-color, high-contrast, and high-dynamic-range time-lapse imaging of migrating cells in complex three-dimensional microenvironments, three-dimensional tracking of clathrin-coated pits, and long-term imaging spanning >10 h and encompassing >2600 time points.


Assuntos
Imagem Óptica/métodos , Epitélio Pigmentado da Retina/ultraestrutura , Imagem com Lapso de Tempo/métodos , Técnicas de Cultura de Células , Movimento Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Imagem Óptica/instrumentação , Imagem com Lapso de Tempo/instrumentação
18.
BMC Mol Biol ; 16: 8, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25880398

RESUMO

BACKGROUND: Ras pathway mutation leads to induction and Erk phosphorylation and activation of the Ets1 transcription factor. Ets1 in turn induces cyclin E and cyclin dependent kinase (cdk) 2 to drive cell cycle progression. Ets1 also induces expression of the epithelial-mesenchymal transition (EMT) transcription factor Zeb1, and thereby links Ras mutation to EMT, which is thought to drive tumor invasion. Ras pathway mutations are detected by the Rb1 tumor suppression pathway, and mutation or inactivation of the Rb1 pathway is required for EMT. RESULTS: We examined linkage between Rb1, Ets1 and Zeb1. We found that an Rb1-E2F complex binds the Ets1 promoter and constitutively limits Ets1 expression. But, Rb1 repression of Zeb1 provides the major impact of Rb1 on Ets1 expression. We link Rb1 repression of Zeb1 to induction of miR-200 family members, which in turn target Ets1 mRNA. These findings suggest that Ets1 and Zeb1 comprise an amplification loop that is dependent upon miR-200 and regulated by Rb1. Thus, induction of Ets1 when the Rb1 pathway is lost may contribute to deregulated cell cycle progression through Ets1 induction of cyclin E and cdk2. Consistent with such an amplification loop, we correlate expression of Ets1 and Zeb1 in mouse and human lung adenocarcinoma. In addition we demonstrate that Ets1 expression in thymocytes is also dependent upon Zeb1. CONCLUSIONS: Taken together, our results provide evidence of an Rb1-dependent Ets1-Zeb1 amplification loop in thymocyte differentiation and tumor invasion.


Assuntos
Adenocarcinoma/genética , Proteínas de Homeodomínio/genética , Neoplasias Pulmonares/genética , Proteína Proto-Oncogênica c-ets-1/genética , Proteína do Retinoblastoma/genética , Timócitos/fisiologia , Fatores de Transcrição/genética , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Adulto , Animais , Diferenciação Celular , Células Cultivadas , Proteínas de Homeodomínio/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , MicroRNAs/metabolismo , Invasividade Neoplásica , Transdução de Sinais , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco
19.
Anal Chem ; 87(10): 5026-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25898152

RESUMO

There is a critical need for high-speed multiparameter photophysical measurements of large libraries of fluorescent probe variants for imaging and biosensor development. We present a microfluidic flow cytometer that rapidly assays 10(4)-10(5) member cell-based fluorophore libraries, simultaneously measuring fluorescence lifetime and photobleaching. Together, these photophysical characteristics determine imaging performance. We demonstrate the ability to resolve the diverse photophysical characteristics of different library types and the ability to identify rare populations.


Assuntos
Citometria de Fluxo/instrumentação , Corantes Fluorescentes/química , Dispositivos Lab-On-A-Chip , Células HeLa , Humanos , Fotodegradação , Espectrometria de Fluorescência
20.
Opt Express ; 22(21): 26141-52, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25401646

RESUMO

Light-sheet fluorescence microscopy (LSFM) affords highly parallelized 3D imaging with optical sectioning capability and minimal light exposure. However, using Gaussian beams for light-sheet generation results in a trade-off between beam waist thickness and the area over which the beam can approximate a light-sheet. Here, we present a novel form of LSFM that uses incoherent extended focusing to produce divergence free light-sheets with near diffraction-limited resolution and uniform intensity distribution along the propagation direction. We demonstrate the imaging performance of the new technique by volumetric imaging of beads, collagen fibers, and melanoma cancer cells with sub-cellular resolution.


Assuntos
Imageamento Tridimensional , Luz , Iluminação/instrumentação , Microscopia de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA