Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 517(7535): 460-5, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25517094

RESUMO

Endocytosis is required for internalization of micronutrients and turnover of membrane components. Endophilin has been assigned as a component of clathrin-mediated endocytosis. Here we show in mammalian cells that endophilin marks and controls a fast-acting tubulovesicular endocytic pathway that is independent of AP2 and clathrin, activated upon ligand binding to cargo receptors, inhibited by inhibitors of dynamin, Rac, phosphatidylinositol-3-OH kinase, PAK1 and actin polymerization, and activated upon Cdc42 inhibition. This pathway is prominent at the leading edges of cells where phosphatidylinositol-3,4-bisphosphate-produced by the dephosphorylation of phosphatidylinositol-3,4,5-triphosphate by SHIP1 and SHIP2-recruits lamellipodin, which in turn engages endophilin. This pathway mediates the ligand-triggered uptake of several G-protein-coupled receptors such as α2a- and ß1-adrenergic, dopaminergic D3 and D4 receptors and muscarinic acetylcholine receptor 4, the receptor tyrosine kinases EGFR, HGFR, VEGFR, PDGFR, NGFR and IGF1R, as well as interleukin-2 receptor. We call this new endocytic route fast endophilin-mediated endocytosis (FEME).


Assuntos
Aciltransferases/metabolismo , Endocitose , Actinas/metabolismo , Linhagem Celular , Clatrina , Dinaminas/metabolismo , Humanos , Ligantes , Fosfatos de Fosfatidilinositol/metabolismo , Pseudópodes/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-2/metabolismo , Transdução de Sinais , Fatores de Tempo
2.
Methods ; 113: 91-104, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27725303

RESUMO

By definition, cytosolic aminoacyl-tRNA synthetases (aaRSs) should be restricted to the cytosol of eukaryotic cells where they supply translating ribosomes with their aminoacyl-tRNA substrates. However, it has been shown that other translationally-active compartments like mitochondria and plastids can simultaneously contain the cytosolic aaRS and its corresponding organellar ortholog suggesting that both forms do not share the same organellar function. In addition, a fair number of cytosolic aaRSs have also been found in the nucleus of cells from several species. Hence, these supposedly cytosolic-restricted enzymes have instead the potential to be multi-localized. As expected, in all examples that were studied so far, when the cytosolic aaRS is imported inside an organelle that already contains its bona fide corresponding organellar-restricted aaRSs, the cytosolic form was proven to exert a nonconventional and essential function. Some of these essential functions include regulating homeostasis and protecting against various stresses. It thus becomes critical to assess meticulously the subcellular localization of each of these cytosolic aaRSs to unravel their additional roles. With this objective in mind, we provide here a review on what is currently known about cytosolic aaRSs multi-compartmentalization and we describe all commonly used protocols and procedures for identifying the compartments in which cytosolic aaRSs relocalize in yeast and human cells.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Núcleo Celular/enzimologia , Citosol/enzimologia , Mitocôndrias/enzimologia , Ribossomos/enzimologia , Saccharomyces cerevisiae/enzimologia , Aminoacil-tRNA Sintetases/classificação , Aminoacil-tRNA Sintetases/genética , Anticorpos/química , Western Blotting/métodos , Compartimento Celular , Fracionamento Celular/métodos , Linhagem Celular , Núcleo Celular/ultraestrutura , Citosol/ultraestrutura , Imunofluorescência/métodos , Expressão Gênica , Humanos , Mitocôndrias/ultraestrutura , Transporte Proteico , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura
3.
J Biol Chem ; 289(44): 30702-30716, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25231985

RESUMO

The adenylate cyclase (CyaA) toxin, a multidomain protein of 1706 amino acids, is one of the major virulence factors produced by Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic target cells in which it produces high levels of cAMP, thus altering the cellular physiology. Although CyaA has been extensively studied by various cellular and molecular approaches, the structural and functional states of the toxin remain poorly characterized. Indeed, CyaA is a large protein and exhibits a pronounced hydrophobic character, making it prone to aggregation into multimeric forms. As a result, CyaA has usually been extracted and stored in denaturing conditions. Here, we define the experimental conditions allowing CyaA folding into a monomeric and functional species. We found that CyaA forms mainly multimers when refolded by dialysis, dilution, or buffer exchange. However, a significant fraction of monomeric, folded protein could be obtained by exploiting molecular confinement on size exclusion chromatography. Folding of CyaA into a monomeric form was found to be critically dependent upon the presence of calcium and post-translational acylation of the protein. We further show that the monomeric preparation displayed hemolytic and cytotoxic activities suggesting that the monomer is the genuine, physiologically active form of the toxin. We hypothesize that the structural role of the post-translational acylation in CyaA folding may apply to other RTX toxins.


Assuntos
Toxina Adenilato Ciclase/química , Proteínas de Bactérias/química , Bordetella pertussis/enzimologia , Cálcio/química , Acilação , Toxina Adenilato Ciclase/isolamento & purificação , Toxina Adenilato Ciclase/farmacologia , Animais , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Cromatografia em Gel , Dicroísmo Circular , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Hemólise , Processamento de Proteína Pós-Traducional , Redobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Ovinos , Ureia/química
4.
Enzymes ; 48: 117-147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33837702

RESUMO

The aminoacylation reaction is one of most extensively studied cellular processes. The so-called "canonical" reaction is carried out by direct charging of an amino acid (aa) onto its corresponding transfer RNA (tRNA) by the cognate aminoacyl-tRNA synthetase (aaRS), and the canonical usage of the aminoacylated tRNA (aa-tRNA) is to translate a messenger RNA codon in a translating ribosome. However, four out of the 22 genetically-encoded aa are made "noncanonically" through a two-step or indirect route that usually compensate for a missing aaRS. Additionally, from the 22 proteinogenic aa, 13 are noncanonically used, by serving as substrates for the tRNA- or aa-tRNA-dependent synthesis of other cellular components. These nontranslational processes range from lipid aminoacylation, and heme, aa, antibiotic and peptidoglycan synthesis to protein degradation. This chapter focuses on these noncanonical usages of aa-tRNAs and the ways of generating them, and also highlights the strategies that cells have evolved to balance the use of aa-tRNAs between protein synthesis and synthesis of other cellular components.


Assuntos
Aminoacil-tRNA Sintetases , Aminoacilação de RNA de Transferência , Aminoácidos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Aminoacilação , RNA de Transferência/genética , RNA de Transferência/metabolismo
5.
Biochim Biophys Acta Gene Regul Mech ; 1861(4): 387-400, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29155070

RESUMO

Prokaryotic and eukaryotic cytosolic aminoacyl-tRNA synthetases (aaRSs) are essentially known for their conventional function of generating the full set of aminoacyl-tRNA species that are needed to incorporate each organism's repertoire of genetically-encoded amino acids during ribosomal translation of messenger RNAs. However, bacterial and eukaryotic cytosolic aaRSs have been shown to exhibit other essential nonconventional functions. Here we review all the subcellular compartments that prokaryotic and eukaryotic cytosolic aaRSs can reach to exert either a conventional or nontranslational role. We describe the physiological and stress conditions, the mechanisms and the signaling pathways that trigger their relocation and the new functions associated with these relocating cytosolic aaRS. Finally, given that these relocating pools of cytosolic aaRSs participate to a wide range of cellular pathways beyond translation, but equally important for cellular homeostasis, we mention some of the pathologies and diseases associated with the dis-regulation or malfunctioning of these nontranslational functions.


Assuntos
Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/fisiologia , Citosol/enzimologia , RNA de Transferência/metabolismo , Aminoacilação de RNA de Transferência/fisiologia , Aminoacil-tRNA Sintetases/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Transporte Biológico , Citocinas/biossíntese , Células Eucarióticas/enzimologia , HIV/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Proteínas de Neoplasias/fisiologia , Neovascularização Fisiológica/fisiologia , Fagocitose/fisiologia , Células Procarióticas/enzimologia , Isoformas de Proteínas/fisiologia , Vírus do Sarcoma de Rous/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Especificidade da Espécie , Vertebrados/genética , Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA