Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(9): 097101, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721846

RESUMO

By controlling the variance of the radiation pressure exerted on an optically trapped microsphere in real time, we engineer temperature protocols that shortcut thermal relaxation when transferring the microsphere from one thermal equilibrium state to another. We identify the entropic footprint of such accelerated transfers and derive optimal temperature protocols that either minimize the production of entropy for a given transfer duration or accelerate the transfer for a given entropic cost as much as possible. Optimizing the trade-off yields time-entropy bounds that put speed limits on thermalization schemes. We further show how optimization expands the possibilities for accelerating Brownian thermalization down to its fundamental limits. Our approach paves the way for the design of optimized, finite-time thermodynamics for Brownian engines. It also offers a platform for investigating fundamental connections between information geometry and finite-time processes.

2.
Phys Chem Chem Phys ; 25(45): 30966-30974, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37937541

RESUMO

Grazing incidence fast atom diffraction has mainly been investigated with helium atoms, considered as the best possible choice for surface analysis. This article presents experimental diffraction profiles recorded with neon projectile, between 300 eV and 4 keV kinetic energy with incidence angles θi between 0.3 and 1.5° along three different directions of a LiF(001) crystal surface. These correspond to perpendicular energy ranging from a few meV up to almost 1 eV. A careful analysis of the scattering profile allows us to extract the diffracted intensities even when inelastic effects become so large that most quantum signatures have disappeared. The relevance of this approach is discussed in terms of surface topology.

3.
Phys Rev Lett ; 128(20): 200601, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657900

RESUMO

Causality is an important assumption underlying nonequilibrium generalizations of the second law of thermodynamics known as fluctuation relations. We here experimentally study the nonequilibrium statistical properties of the work and of the entropy production for an optically trapped, underdamped nanoparticle continuously subjected to a time-delayed feedback control. Whereas the non-Markovian feedback depends on the past position of the particle for a forward trajectory, it depends on its future position for a time-reversed path, and is therefore acausal. In the steady-state regime, we show that the corresponding fluctuation relations in the long-time limit exhibit a clear signature of this acausality, even though the time-reversed dynamics is not physically realizable.

4.
Phys Rev Lett ; 128(7): 070601, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244419

RESUMO

Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small nonequilibrium systems. While work and heat are equally important forms of energy exchange, fluctuation relations have not been experimentally assessed for the generic situation of simultaneous mechanical and thermal changes. Thermal driving is indeed generally slow and more difficult to realize than mechanical driving. Here, we use feedback cooling techniques to implement fast and controlled temperature variations of an underdamped levitated microparticle that are 1 order of magnitude faster than the equilibration time. Combining mechanical and thermal control, we verify the validity of a fluctuation theorem that accounts for both contributions, well beyond the range of linear response theory. Our results allow the investigation of general far-from-equilibrium processes in microscopic systems that involve fast mechanical and thermal changes at the same time.

5.
Phys Chem Chem Phys ; 24(20): 12319-12328, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35545937

RESUMO

Grazing incidence fast atom diffraction at crystal surfaces (GIFAD or FAD) has demonstrated coherent diffraction both at effective energies close to one eV (λ⊥ ≈ 14 pm for He) and at elevated surface temperatures offering high topological resolution and real time monitoring of growth processes. This is explained by a favorable Debye-Waller factor specific to the multiple collision regime of grazing incidence. This paper presents the first extensive evaluation of the temperature behavior between 177 and 1017 K on a LiF surface. Similarly to diffraction at thermal energies (TEAS), an exponential attenuation of the elastic intensity is observed but, contrarily to TEAS, the maximum coherence is not directly reduced by the attraction forces that increase the effective impact energy. It is more influenced by the surface stiffness and appears very sensitive to surface defects.


Assuntos
Temperatura , Fenômenos Físicos
6.
Phys Chem Chem Phys ; 23(13): 7615-7636, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33404037

RESUMO

Grazing incidence fast atom diffraction (GIFAD) at surfaces has made rapid progress and has established itself as a surface analysis tool where effective energy E⊥ of the motion towards the surface is in the same range as that in thermal energy atom scattering (TEAS). To better compare the properties of both techniques, we use the diffraction patterns of helium and neon atoms impinging on a LiF (001) surface as a model system. E-Scan, θ-scan, and φ-scan are presented where the primary beam energy E is varied between a few hundred eV up to five keV, the angle of incidence θi between 0.2 and 2° and the azimuthal angle φi around 360°. The resulting diffraction charts are analyzed in terms of high and low values of effective energy E⊥. The former provides high resolution at the positions of the surface atoms and the attached repulsive interaction potentials while the second is sensitive to the attractive forces towards the surface. The recent progress of inelastic diffraction is briefly presented.

7.
Nat Commun ; 11(1): 1360, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170062

RESUMO

Feedback control mechanisms are ubiquitous in science and technology, and play an essential role in regulating physical, biological and engineering systems. The standard second law of thermodynamics does not hold in the presence of measurement and feedback. Most studies so far have extended the second law for discrete, Markovian feedback protocols; however, non-Markovian feedback is omnipresent in processes where the control signal is applied with a non-negligible delay. Here, we experimentally investigate the thermodynamics of continuous, time-delayed feedback control using the motion of an optically levitated, underdamped microparticle. We test the validity of a generalized second law which bounds the energy extracted from the system, and study the breakdown of feedback cooling for very large time delays.

8.
Chem Commun (Camb) ; 55(83): 12507-12510, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31576386

RESUMO

Charge reduction and neutralization of electro-sprayed peptides are realized by selective gas-phase photocleavage of tailored covalent tags. The concept is demonstrated with four model peptides in positive and negative ion modes and tagged insulin as the largest construct.


Assuntos
Insulina/química , Peptídeos/química , Vácuo , Íons/química , Estrutura Molecular , Processos Fotoquímicos
9.
Beilstein J Nanotechnol ; 8: 325-333, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243571

RESUMO

Recent progress in synthetic chemistry and molecular quantum optics has enabled demonstrations of the quantum mechanical wave-particle duality for complex particles, with masses exceeding 10 kDa. Future experiments with even larger objects will require new optical preparation and manipulation methods that shall profit from the possibility to cleave a well-defined molecular tag from a larger parent molecule. Here we present the design and synthesis of two model compounds as well as evidence for the photoinduced beam depletion in high vacuum in one case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA