Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 45(4): 1082-1095, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34859447

RESUMO

Oxylipins are lipid-derived molecules that are ubiquitous in eukaryotes and whose functions in plant physiology have been widely reported. They appear to play a major role in plant immunity by orchestrating reactive oxygen species (ROS) and hormone-dependent signalling pathways. The present work focuses on the specific case of fatty acid hydroperoxides (HPOs). Although some studies report their potential use as exogenous biocontrol agents for plant protection, evaluation of their efficiency in planta is lacking and no information is available about their mechanism of action. In this study, the potential of 13(S)-hydroperoxy-(9Z, 11E)-octadecadienoic acid (13-HPOD) and 13(S)-hydroperoxy-(9Z, 11E, 15Z)-octadecatrienoic acid (13-HPOT), as plant defence elicitors and the underlying mechanism of action is investigated. Arabidopsis thaliana leaf resistance to Botrytis cinerea was observed after root application with HPOs. They also activate early immunity-related defence responses, like ROS. As previous studies have demonstrated their ability to interact with plant plasma membranes (PPM), we have further investigated the effects of HPOs on biomimetic PPM structure using complementary biophysics tools. Results show that HPO insertion into PPM impacts its global structure without solubilizing it. The relationship between biological assays and biophysical analysis suggests that lipid amphiphilic elicitors that directly act on membrane lipids might trigger early plant defence events.


Assuntos
Peróxidos Lipídicos , Plantas , Membrana Celular/metabolismo , Peróxidos Lipídicos/metabolismo , Percepção , Plantas/metabolismo , Espécies Reativas de Oxigênio
2.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012629

RESUMO

The increasing population will challenge healthcare, particularly because the worldwide population has never been older. Therapeutic solutions to age-related disease will be increasingly critical. Kinases are key regulators of human health and represent promising therapeutic targets for novel drug candidates. The dual-specificity tyrosine-regulated kinase (DYRKs) family is of particular interest and, among them, DYRK1A has been implicated ubiquitously in varied human diseases. Herein, we focus on the characteristics of DYRK1A, its regulation and functional role in different human diseases, which leads us to an overview of future research on this protein of promising therapeutic potential.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Doença , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Quinases Dyrk
3.
J Colloid Interface Sci ; 616: 739-748, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247812

RESUMO

Rhamnolipids (RLs) are among the most important biosurfactants produced by microorganisms, and have been widely investigated because of their multiple biological activities. Their action appears to depend on their structural interference with lipid membranes, therefore several studies have been performed to investigate this aspect. We studied by X-ray scattering, neutron reflectometry and molecular dynamic simulations the insertion of dirhamnolipid (diRL), the most abundant RL, in model cellular membranes made of phospholipids and glycosphingolipids. In our model systems the affinity of diRL to the membrane is highly promoted by the presence of the glycosphingolipids and molecular dynamics simulations unveil that this evidence is related to sugar-sugar attractive interactions at the membrane surface. Our results improve the understanding of the plethora of activities associated with RLs, also opening new perspectives in their selective use for pharmaceutical and cosmetics formulations. Additionally, they shed light on the still debated role of carbohydrate-carbohydrate interactions as driving force for molecular contacts at membrane surface.


Assuntos
Glicoesfingolipídeos , Simulação de Dinâmica Molecular , Membrana Celular/química , Glicolipídeos , Glicoesfingolipídeos/análise , Bicamadas Lipídicas/química , Açúcares
4.
mBio ; 12(6): e0177421, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724831

RESUMO

Bacillus velezensis is considered as a model species belonging to the so-called Bacillus subtilis complex that evolved typically to dwell in the soil rhizosphere niche and establish an intimate association with plant roots. This bacterium provides protection to its natural host against diseases and represents one of the most promising biocontrol agents. However, the molecular basis of the cross talk that this bacterium establishes with its natural host has been poorly investigated. We show here that these plant-associated bacteria have evolved a polymer-sensing system to perceive their host and that, in response, they increase the production of the surfactin-type lipopeptide. Furthermore, we demonstrate that surfactin synthesis is favored upon growth on root exudates and that this lipopeptide is a key component used by the bacterium to optimize biofilm formation, motility, and early root colonization. In this specific nutritional context, the bacterium also modulates qualitatively the pattern of surfactin homologues coproduced in planta and forms mainly variants that are the most active at triggering plant immunity. Surfactin represents a shared good as it reinforces the defensive capacity of the host. IMPORTANCE Within the plant-associated microbiome, some bacterial species are of particular interest due to the disease protective effect they provide via direct pathogen suppression and/or stimulation of host immunity. While these biocontrol mechanisms are quite well characterized, we still poorly understand the molecular basis of the cross talk these beneficial bacteria initiate with their host. Here, we show that the model species Bacillus velezensis stimulates the production of the surfactin lipopeptide upon sensing pectin as a cell surface molecular pattern and upon feeding on root exudates. Surfactin favors bacterial rhizosphere fitness on one hand and primes the plant immune system on the other hand. Our data therefore illustrate how both partners use this multifunctional compound as a unique shared good to sustain a mutualistic interaction.


Assuntos
Bacillus/metabolismo , Lipopeptídeos/metabolismo , Pectinas/metabolismo , Exsudatos de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose , Bacillus/genética , Interações entre Hospedeiro e Microrganismos , Rizosfera , Microbiologia do Solo
5.
Trends Plant Sci ; 25(1): 22-34, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31668451

RESUMO

Plant (or phyto-) oxylipins (POs) are produced under a wide range of stress conditions and although they are well known to activate stress-related signalling pathways, the nonsignalling roles of POs are poorly understood. We describe oxylipins as direct biocidal agents and propose that structure-function relationships play here a pivotal role. Based on their chemical configuration, POs, such as reactive oxygen and electrophile species, activate defence-related gene expression. We also propose that their ability to interact with pathogen membranes is important, but still misunderstood, and that they are involved in cross-kingdom communication. Taken as a whole, the current literature suggests that POs have a high potential as biocontrol agents. However, the mechanisms underlying these multifaceted compounds remain largely unknown.


Assuntos
Oxilipinas , Plantas , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Transdução de Sinais
6.
Colloids Surf B Biointerfaces ; 175: 384-391, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30554017

RESUMO

Linoleic and linolenic acid hydroperoxides (HPOs) constitute key intermediate oxylipins playing an important role as signaling molecules during plant defense processes in response to biotic or abiotic stress. They have also been demonstrated in vitro as antimicrobial agents against plant fungi and bacteria. To reach the phytopathogens in vivo, the HPOs biosynthesized in the plant cells must cross the plant plasma membrane (PPM) where they can also interact with plasma membrane lipids and have an effect on their organization. In the present study, we have investigated the interaction properties of HPOs with PPM at a molecular level using biophysical tools combining in vitro and in silico approaches and using plant biomimetic lipid systems. Our results have shown that HPOs are able to interact with PPM lipids and perturb their lateral organization. Glucosylceramide (GluCer) is a privileged partner, sitosterol lessens their binding and the presence of both GluCer and sitosterol further reduces their interaction. Hydrophobic effect and polar interactions are involved in the binding. The chemical structure of HPOs influences their affinity for PPM lipids. The presence of three double bonds in the HPO molecule gives rise to a higher affinity comparatively to two double bonds, which can be explained by their differential interaction with the lipid polar headgroups.


Assuntos
Biomimética , Membrana Celular/metabolismo , Ácidos Linolênicos/metabolismo , Peróxidos Lipídicos/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA