Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 67(2): 327-332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38051360

RESUMO

AIMS/HYPOTHESIS: GLIS3 encodes a transcription factor involved in pancreatic beta cell development and function. Rare pathogenic, bi-allelic mutations in GLIS3 cause syndromic neonatal diabetes whereas frequent SNPs at this locus associate with common type 2 diabetes risk. Because rare, functional variants located in other susceptibility genes for type 2 diabetes have already been shown to strongly increase individual risk for common type 2 diabetes, we aimed to investigate the contribution of rare pathogenic GLIS3 variants to type 2 diabetes. METHODS: GLIS3 was sequenced in 5471 individuals from the Rare Variants Involved in Diabetes and Obesity (RaDiO) study. Variant pathogenicity was assessed following the criteria established by the American College of Medical Genetics and Genomics (ACMG). To address the pathogenic strong criterion number 3 (PS3), we conducted functional investigations of these variants using luciferase assays, focusing on capacity of GLIS family zinc finger 3 (GLIS3) to bind to and activate the INS promoter. The association between rare pathogenic or likely pathogenic (P/LP) variants and type 2 diabetes risk (and other metabolic traits) was then evaluated. A meta-analysis combining association results from RaDiO, the 52K study (43,125 individuals) and the TOPMed study (44,083 individuals) was finally performed. RESULTS: Through targeted resequencing of GLIS3, we identified 105 rare variants that were carried by 395 participants from RaDiO. Among them, 49 variants decreased the activation of the INS promoter. Following ACMG criteria, 18 rare variants were classified as P/LP, showing an enrichment in the last two exons compared with the remaining exons (p<5×10-6; OR>3.5). The burden of these P/LP variants was strongly higher in individuals with type 2 diabetes (p=3.0×10-3; OR 3.9 [95% CI 1.4, 12]), whereas adiposity, age at type 2 diabetes diagnosis and cholesterol levels were similar between variant carriers and non-carriers with type 2 diabetes. Interestingly, all carriers with type 2 diabetes were sensitive to oral sulfonylureas. A total of 7 P/LP variants were identified in both 52K and TOPMed studies. The meta-analysis of association studies obtained from RaDiO, 52K and TOPMed showed an enrichment of P/LP GLIS3 variants in individuals with type 2 diabetes (p=5.6×10-5; OR 2.1 [95% CI 1.4, 2.9]). CONCLUSIONS/INTERPRETATION: Rare P/LP GLIS3 variants do contribute to type 2 diabetes risk. The variants located in the distal part of the protein could have a direct effect on its functional activity by impacting its transactivation domain, by homology with the mouse GLIS3 protein. Furthermore, rare P/LP GLIS3 variants seem to have a direct clinical effect on beta cell function, which could be improved by increasing insulin secretion via the use of sulfonylureas.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Camundongos , Animais , Recém-Nascido , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Mutação , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo
2.
Genet Med ; 25(7): 100857, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37092539

RESUMO

PURPOSE: Recessive deficiency of proopiomelanocortin (POMC) causes childhood-onset severe obesity. Cases can now benefit from the melanocortin 4 receptor agonist setmelanotide. Furthermore, a phase 3 clinical trial is evaluating setmelanotide in heterozygotes for POMC. We performed a large-scale genetic analysis to assess the effect of heterozygous, pathogenic POMC variants on obesity. METHODS: A genetic analysis was performed in a family including 2 cousins with childhood-onset obesity. We analyzed the obesity status of heterozygotes for pathogenic POMC variants in the Human Gene Mutation Database. The association between heterozygous pathogenic POMC variants and obesity risk was assessed using 190,000 exome samples from UK Biobank. RESULTS: The 2 cousins carried a compound heterozygous pathogenic variant in POMC. Six siblings were heterozygotes; only 1 of them had obesity. In Human Gene Mutation Database, we identified 60 heterozygotes for pathogenic POMC variants, of whom 14 had obesity. In UK Biobank, heterozygous pathogenic POMC variants were not associated with obesity risk, but they modestly increased body mass index levels. CONCLUSION: Heterozygous pathogenic POMC variants do not contribute to monogenic obesity, but they slightly increase body mass index. Setmelanotide use in patients with obesity, which would only be based on the presence of a heterozygous POMC variant, can be questioned.


Assuntos
Obesidade Infantil , Pró-Opiomelanocortina , Criança , Humanos , Índice de Massa Corporal , Heterozigoto , Mutação , Obesidade/genética , Obesidade Infantil/genética , Pró-Opiomelanocortina/genética , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/agonistas , Fármacos Antiobesidade/uso terapêutico
3.
J Med Genet ; 59(11): 1035-1043, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35115415

RESUMO

BACKGROUND: Nephrolithiasis (NL) is a complex multifactorial disease affecting up to 10%-20% of the human population and causing a significant burden on public health systems worldwide. It results from a combination of environmental and genetic factors. Hyperoxaluria is a major risk factor for NL. METHODS: We used a whole exome-based approach in a patient with calcium oxalate NL. The effects of the mutation were characterised using cell culture and in silico analyses. RESULTS: We identified a rare heterozygous missense mutation (c.1519C>T/p.R507W) in the SLC26A6 gene that encodes a secretory oxalate transporter. This mutation cosegregated with hyperoxaluria in the family. In vitro characterisation of mutant SLC26A6 demonstrated that Cl--dependent oxalate transport was dramatically reduced because the mutation affects both SLC26A6 transport activity and membrane surface expression. Cotransfection studies demonstrated strong dominant-negative effects of the mutant on the wild-type protein indicating that the phenotype of patients heterozygous for this mutation may be more severe than predicted by haploinsufficiency alone. CONCLUSION: Our study is in line with previous observations made in the mouse showing that SLC26A6 inactivation can cause inherited enteric hyperoxaluria with calcium oxalate NL. Consistent with an enteric form of hyperoxaluria, we observed a beneficial effect of increasing calcium in the patient's diet to reduce urinary oxalate excretion.


Assuntos
Antiporters , Hiperoxalúria , Nefrolitíase , Transportadores de Sulfato , Humanos , Antiporters/genética , Cálcio/metabolismo , Oxalato de Cálcio/metabolismo , Hiperoxalúria/complicações , Hiperoxalúria/genética , Mutação , Nefrolitíase/genética , Nefrolitíase/complicações , Nefrolitíase/metabolismo , Oxalatos/metabolismo , Transportadores de Sulfato/genética
4.
BMC Med ; 15(1): 37, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28228143

RESUMO

BACKGROUND: Salivary (AMY1) and pancreatic (AMY2) amylases hydrolyze starch. Copy number of AMY1A (encoding AMY1) was reported to be higher in populations with a high-starch diet and reduced in obese people. These results based on quantitative PCR have been challenged recently. We aimed to re-assess the relationship between amylase and adiposity using a systems biology approach. METHODS: We assessed the association between plasma enzymatic activity of AMY1 or AMY2, and several metabolic traits in almost 4000 French individuals from D.E.S.I.R. longitudinal study. The effect of the number of copies of AMY1A (encoding AMY1) or AMY2A (encoding AMY2) measured through droplet digital PCR was then analyzed on the same parameters in the same study. A Mendelian randomization analysis was also performed. We subsequently assessed the association between AMY1A copy number and obesity risk in two case-control studies (5000 samples in total). Finally, we assessed the association between body mass index (BMI)-related plasma metabolites and AMY1 or AMY2 activity. RESULTS: We evidenced strong associations between AMY1 or AMY2 activity and lower BMI. However, we found a modest contribution of AMY1A copy number to lower BMI. Mendelian randomization identified a causal negative effect of BMI on AMY1 and AMY2 activities. Yet, we also found a significant negative contribution of AMY1 activity at baseline to the change in BMI during the 9-year follow-up, and a significant contribution of AMY1A copy number to lower obesity risk in children, suggesting a bidirectional relationship between AMY1 activity and adiposity. Metabonomics identified a BMI-independent association between AMY1 activity and lactate, a product of complex carbohydrate fermentation. CONCLUSIONS: These findings provide new insights into the involvement of amylase in adiposity and starch metabolism.


Assuntos
Índice de Massa Corporal , Obesidade/enzimologia , alfa-Amilases Pancreáticas/metabolismo , alfa-Amilases Salivares/metabolismo , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Biologia de Sistemas
5.
Diabetologia ; 58(2): 290-4, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25394825

RESUMO

AIMS/HYPOTHESIS: Childhood obesity is a major public health problem in Mexico, affecting one in every three children. Genome-wide association studies identified genetic variants associated with childhood obesity, but a large missing heritability remains to be elucidated. We have recently shown a strong association between a highly polymorphic copy number variant encompassing the salivary amylase gene (AMY1 also known as AMY1A) and obesity in European and Asian adults. In the present study, we aimed to evaluate the association between AMY1 copy number and obesity in Mexican children. METHODS: We evaluated the number of AMY1 copies in 597 Mexican children (293 obese children and 304 normal weight controls) through highly sensitive digital PCR. The effect of AMY1 copy number on obesity status was assessed using a logistic regression model adjusted for age and sex. RESULTS: We identified a marked effect of AMY1 copy number on reduced risk of obesity (OR per estimated copy 0.84, with the number of copies ranging from one to 16 in this population; p = 4.25 × 10(-6)). The global association between AMY1 copy number and reduced risk of obesity seemed to be mostly driven by the contribution of the highest AMY1 copy number. Strikingly, all children with >10 AMY1 copies were normal weight controls. CONCLUSIONS/INTERPRETATION: Salivary amylase initiates the digestion of dietary starch, which is highly consumed in Mexico. Our current study suggests putative benefits of high number of AMY1 copies (and related production of salivary amylase) on energy metabolism in Mexican children.


Assuntos
Metabolismo dos Carboidratos/genética , Obesidade/genética , alfa-Amilases Salivares/metabolismo , Índice de Massa Corporal , Criança , Feminino , Predisposição Genética para Doença/genética , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Modelos Logísticos , Masculino , México/epidemiologia , Obesidade/epidemiologia , Saúde Pública , alfa-Amilases Salivares/genética
6.
Diabetes Metab ; 50(1): 101507, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141807

RESUMO

OBJECTIVE: Heterozygous pathogenic or likely pathogenic (P/LP) PDX1 variants cause monogenic diabetes. We comprehensively examined the phenotypes of carriers of P/LP PDX1 variants, and delineated potential treatments that could be efficient in an objective of precision medicine. METHODS: The study primarily involved a family harboring a novel P/LP PDX1 variant. We then conducted an analysis of documented carriers of P/LP PDX1 variants, from the Human Gene Mutation Database (HGMD), RaDiO study, and Type 2 Diabetes Knowledge Portal (T2DKP) including 87 K participants. RESULTS: Within the family, we identified a P/LP PDX1 variant encoding p.G232S in four relatives. All of them exhibited diabetes, albeit with very different ages of onset (10-40 years), along with caudal pancreatic agenesis and childhood-onset obesity. In the HGMD, 79 % of carriers of a P/LP PDX1 variant displayed diabetes (with differing ages of onset from eight days of life to 67 years), 63 % exhibited pancreatic insufficiency and surprisingly 40 % had obesity. The impact of P/LP PDX1 variants on increased risk of type 2 diabetes mellitus was confirmed in the T2DKP. Dipeptidyl peptidase 4 inhibitor (DPP4i) and glucagon-like peptide-1 receptor agonist (GLP1-RA), enabled good glucose control without hypoglycemia and weight management. CONCLUSIONS: This study reveals diverse clinical presentations among the carriers of a P/LP PDX1 variant, highlighting strong variations in diabetes onset, and unexpectedly high prevalence of obesity and pancreatic development abnormalities. Clinical data suggest that DPP4i and GLP1-RA may be the best effective treatments to manage both glucose and weight controls, opening new avenue in precision diabetic medicine.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Criança , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Medicina de Precisão , Transativadores/genética , Proteínas de Homeodomínio/genética , Hipoglicemiantes/uso terapêutico , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/genética
7.
Diabetes Care ; 47(3): 444-451, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170957

RESUMO

OBJECTIVE: Rare variants in DYRK1B have been described in some patients with central obesity, type 2 diabetes, and early-onset coronary disease. Owing to the limited number of conducted studies, the broader impact of DYRK1B variants on a larger scale has yet to be investigated. RESEARCH DESIGN AND METHODS: DYRK1B was sequenced in 9,353 participants from a case-control study for obesity and type 2 diabetes. Each DYRK1B variant was functionally assessed in vitro. Variant pathogenicity was determined using criteria from the American College of Medical Genetics and Genomics (ACMG). The effect of pathogenic or likely pathogenic (P/LP) variants on metabolic traits was assessed using adjusted mixed-effects score tests. RESULTS: Sixty-five rare, heterozygous DYRK1B variants were identified and were not associated with obesity or type 2 diabetes. Following functional analyses, 20 P/LP variants were pinpointed, including 6 variants that exhibited a fully inhibitory effect (P/LP-null) on DYRK1B activity. P/LP and P/LP-null DYRK1B variants were associated with increased BMI and obesity risk; however, the impact was notably more pronounced for the P/LP-null variants (effect of 8.0 ± 3.2 and odds ratio of 7.9 [95% CI 1.2-155]). Furthermore, P/LP-null variants were associated with higher fasting glucose and type 2 diabetes risk (effect of 2.9 ± 1.0 and odds ratio of 4.8 [95% CI 0.85-37]), while P/LP variants had no effect on glucose homeostasis. CONCLUSIONS: P/LP, total loss-of-function DYRK1B variants cause monogenic obesity associated with type 2 diabetes. This study underscores the significance of conducting functional assessments in order to accurately ascertain the tangible effects of P/LP DYRK1B variants.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Estudos de Casos e Controles , Obesidade/complicações , Obesidade/genética , Fenótipo , Glucose
8.
Nat Commun ; 15(1): 6627, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103322

RESUMO

Functional genetics has identified drug targets for metabolic disorders. Opioid use impacts metabolic homeostasis, although mechanisms remain elusive. Here, we explore the OPRD1 gene (encoding delta opioid receptor, DOP) to understand its impact on type 2 diabetes. Large-scale sequencing of OPRD1 and in vitro analysis reveal that loss-of-function variants are associated with higher adiposity and lower hyperglycemia risk, whereas gain-of-function variants are associated with lower adiposity and higher type 2 diabetes risk. These findings align with studies of opium addicts. OPRD1 is expressed in human islets and beta cells, with decreased expression under type 2 diabetes conditions. DOP inhibition by an antagonist enhances insulin secretion from human beta cells and islets. RNA-sequencing identifies pathways regulated by DOP antagonism, including nerve growth factor, circadian clock, and nuclear receptor pathways. Our study highlights DOP as a key player between opioids and metabolic homeostasis, suggesting its potential as a therapeutic target for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Receptores Opioides delta , Receptores Opioides delta/metabolismo , Receptores Opioides delta/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Secreção de Insulina/genética , Adulto
9.
J Biol Chem ; 286(10): 8481-8492, 2011 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-21199866

RESUMO

The ATP-binding cassette (ABC) transporter ABCB6 is a mitochondrial porphyrin transporter that activates porphyrin biosynthesis. ABCB6 lacks a canonical mitochondrial targeting sequence but reportedly traffics to other cellular compartments such as the plasma membrane. How ABCB6 reaches these destinations is unknown. In this study, we show that endogenous ABCB6 is glycosylated in multiple cell types, indicating trafficking through the endoplasmic reticulum (ER), and has only one atypical site for glycosylation (NXC) in its amino terminus. ABCB6 remained glycosylated when the highly conserved cysteine (Cys-8) was substituted with serine to make a consensus site, NXS. However, this substitution blocked ER exit and produced ABCB6 degradation, which was mostly reversed by the proteasomal inhibitor MG132. The amino terminus of ABCB6 has an additional highly conserved ER luminal cysteine (Cys-26). When Cys-26 was mutated alone or in combination with Cys-8, it also resulted in instability and ER retention. Further analysis revealed that these two cysteines form a disulfide bond. We discovered that other ABC transporters with an amino terminus in the ER had similarly configured conserved cysteines. This analysis led to the discovery of a disease-causing mutation in the sulfonylurea receptor 1 (SUR1)/ABCC8 from a patient with hyperinsulinemic hypoglycemia. The mutant allele only contains a mutation in a conserved amino-terminal cysteine, producing SUR1 that fails to reach the cell surface. These results suggest that for ABC transporters the propensity to form a disulfide bond in the ER defines a unique checkpoint that determines whether a protein is ER-retained.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Dissulfetos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Mitocondriais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Droga/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Alelos , Substituição de Aminoácidos , Animais , Erros Inatos do Metabolismo dos Carboidratos/genética , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Retículo Endoplasmático/genética , Glicosilação , Células HEK293 , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Hipoglicemia/genética , Hipoglicemia/metabolismo , Células K562 , Leupeptinas/farmacologia , Camundongos , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Células NIH 3T3 , Canais de Potássio Corretores do Fluxo de Internalização/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Estrutura Terciária de Proteína , Transporte Proteico/genética , Receptores de Droga/genética , Receptores de Sulfonilureias
10.
J Biol Chem ; 286(32): 28414-24, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21592955

RESUMO

Krüppel-like transcription factors (KLFs) have elicited significant attention because of their regulation of essential biochemical pathways and, more recently, because of their fundamental role in the mechanisms of human diseases. Neonatal diabetes mellitus is a monogenic disorder with primary alterations in insulin secretion. We here describe a key biochemical mechanism that underlies neonatal diabetes mellitus insulin biosynthesis impairment, namely a homozygous mutation within the insulin gene (INS) promoter, c.-331C>G, which affects a novel KLF-binding site. The combination of careful expression profiling, electromobility shift assays, reporter experiments, and chromatin immunoprecipitation demonstrates that, among 16 different KLF proteins tested, KLF11 is the most reliable activator of this site. Congruently, the c.-331C>G INS mutation fails to bind KLF11, thus inhibiting activation by this transcription factor. Klf11(-/-) mice recapitulate the disruption in insulin production and blood levels observed in patients. Thus, these data demonstrate an important role for KLF11 in the regulation of INS transcription via the novel c.-331 KLF site. Lastly, our screening data raised the possibility that other members of the KLF family may also regulate this promoter under distinct, yet unidentified, cellular contexts. Collectively, this study underscores a key role for KLF proteins in biochemical mechanisms of human diseases, in particular, early infancy onset diabetes mellitus.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Diabetes Mellitus , Doenças do Recém-Nascido , Células Secretoras de Insulina , Insulina , Mutagênese Insercional , Proteínas Repressoras , Elementos de Resposta/genética , Transativadores , Fatores de Transcrição , Adulto , Animais , Proteínas Reguladoras de Apoptose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Pré-Escolar , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/metabolismo , Doenças do Recém-Nascido/patologia , Insulina/biossíntese , Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Knockout , Ratos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Tunis Med ; 90(12): 882-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23247789

RESUMO

BACKGROUND: MODY (Maturity-onset diabetes of the young), a dominantly inherited form of early-onset diabetes, is clinically and genetically heterogeneous with more than ten genetic subtypes described worldwide. AIM: To evaluate the possible existence of MODY in 12 young diabetic Tunisian patients by searching for mutations in the most prevalent MODY genes. METHODS: Twelve patients with diabetes in 2-to-3 generations, all diagnosed before age 31, were screened for mutations and deletions in HNF1A, HNF4A, INS, IPF1, NEUROD1 and GCK genes by Sanger sequencing and by Multiplex ligation-dependent probe amplification assay. RESULTS: The patients had no evidence of autoimmunity and a mean age at diabetes diagnosis of 25.66 ± 3.96 years with severe overt diabetes (fasting glycaemia: 10.91 ± 3.55 mmol/ l; HbA1c: 10.46 ± 3.31 %). Two subjects were initially treated with insulin. On the ten initially treated with OHA or on diet, eight converted to insulin therapy (within 3 months to 20 years). Molecular analysis showed only one missense HNF4A mutation (I453V) in one family. No mutations in the studied genes were detected in the other patients. CONCLUSION: A molecular defect in known MODY genes has been excluded in 11 patients with early-onset diabetes suggesting that other genetic causes may explain diabetes in these families. In such cases, new generation sequencing approaches may be well appropriate to identify specific molecular etiologies from extended families and to establish a strategy of molecular diagnostic of MODY in Tunisia.


Assuntos
Diabetes Mellitus Tipo 2/genética , Adolescente , Adulto , Fator 4 Nuclear de Hepatócito/genética , Humanos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Adulto Jovem
12.
Pediatr Diabetes ; 12(3 Pt 2): 266-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21214702

RESUMO

We present a unique case of a 19-year-old man with a positive family history of persistent mild hyperglycemia and a novel V84I mutation in ABCC8. The proband was initially detected to have fasting hyperglycemia (ranging 6.1-6.4 mmol/L) at the age of 12 years. Increased fasting blood glucose was also subsequently detected in five additional family members (in his twin brother, sister, mother, maternal aunt, and grandfather). The grandfather has been known to have mild diabetes since 30 years and has never been treated. After having excluded a causative mutation in five maturity-onset diabetes of the young genes (MODY1-4 and 6), we identified a novel ABCC8 V84I mutation, which segregated with autosomal dominant transmission of mild hyperglycemia within three generations. This mutation that is located in a conserved area of transmembrane domain TMD0 seems to be a rare cause of clinical phenotype resembling glucokinase-deficient diabetes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Hiperglicemia/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Droga/genética , Adolescente , Adulto , Criança , Genes Dominantes , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Sulfonilureias , Adulto Jovem
13.
Nat Metab ; 2(10): 1126-1134, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33046911

RESUMO

Genome-wide association studies have identified 240 independent loci associated with type 2 diabetes (T2D) risk, but this knowledge has not advanced precision medicine. In contrast, the genetic diagnosis of monogenic forms of diabetes (including maturity-onset diabetes of the young (MODY)) are textbook cases of genomic medicine. Recent studies trying to bridge the gap between monogenic diabetes and T2D have been inconclusive. Here, we show a significant burden of pathogenic variants in genes linked with monogenic diabetes among people with common T2D, particularly in actionable MODY genes, thus implying that there should be a substantial change in care for carriers with T2D. We show that, among 74,629 individuals, this burden is probably driven by the pathogenic variants found in GCK, and to a lesser extent in HNF4A, KCNJ11, HNF1B and ABCC8. The carriers with T2D are leaner, which evidences a functional metabolic effect of these mutations. Pathogenic variants in actionable MODY genes are more frequent than was previously expected in common T2D. These results open avenues for future interventions assessing the clinical interest of these pathogenic mutations in precision medicine.


Assuntos
Diabetes Mellitus Tipo 2/genética , Biologia Computacional , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Quinases do Centro Germinativo/genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação
14.
BMC Med Genet ; 10: 33, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368707

RESUMO

BACKGROUND: Candidate gene and genome-wide association studies have both reproducibly identified several common Single Nucleotide Polymorphisms (SNPs) that confer type 2 diabetes (T2D) risk in European populations. Our aim was to evaluate the contribution to T2D of five of these established T2D-associated loci in the Arabic population from Tunisia. METHODS: A case-control design comprising 884 type 2 diabetic patients and 513 control subjects living in the East-Center of Tunisia was used to analyze the contribution to T2D of the following SNPs: E23K in KCNJ11/Kir6.2, K121Q in ENPP1, the -30G/A variant in the pancreatic beta-cell specific promoter of Glucokinase, rs7903146 in TCF7L2 encoding transcription factor 7-like2, and rs7923837 in HHEX encoding the homeobox, hematopoietically expressed transcription factor. RESULTS: TCF7L2-rs7903146 T allele increased susceptibility to T2D (OR = 1.25 [1.06-1.47], P = 0.006) in our study population. This risk was 56% higher among subjects carrying the TT genotype in comparison to those carrying the CC genotype (OR = 1.56 [1.13-2.16], P = 0.002). No allelic or genotypic association with T2D was detected for the other studied polymorphisms. CONCLUSION: In the Tunisian population, TCF7L2-rs7903146 T allele confers an increased risk of developing T2D as previously reported in the European population and many other ethnic groups. In contrast, none of the other tested SNPs that influence T2D risk in the European population was associated with T2D in the Tunisian Arabic population. An insufficient power to detect minor allelic contributions or genetic heterogeneity of T2D between different ethnic groups can explain these findings.


Assuntos
Diabetes Mellitus Tipo 2/genética , Fatores de Transcrição TCF/genética , Idoso , Alelos , Árabes/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Proteína 2 Semelhante ao Fator 7 de Transcrição , Tunísia
15.
Nat Med ; 25(11): 1733-1738, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31700171

RESUMO

The G-protein-coupled receptor accessory protein MRAP2 is implicated in energy control in rodents, notably via the melanocortin-4 receptor1. Although some MRAP2 mutations have been described in people with obesity1-3, their functional consequences on adiposity remain elusive. Using large-scale sequencing of MRAP2 in 9,418 people, we identified 23 rare heterozygous variants associated with increased obesity risk in both adults and children. Functional assessment of each variant shows that loss-of-function MRAP2 variants are pathogenic for monogenic hyperphagic obesity, hyperglycemia and hypertension. This contrasts with other monogenic forms of obesity characterized by excessive hunger, including melanocortin-4 receptor deficiency, that present with low blood pressure and normal glucose tolerance4. The pleiotropic metabolic effect of loss-of-function mutations in MRAP2 might be due to the failure of different MRAP2-regulated G-protein-coupled receptors in various tissues including pancreatic islets.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Predisposição Genética para Doença , Hiperfagia/genética , Obesidade/genética , Adolescente , Adulto , Criança , Metabolismo Energético/genética , Feminino , Humanos , Hiperglicemia/complicações , Hiperglicemia/genética , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperfagia/complicações , Hiperfagia/metabolismo , Hiperfagia/patologia , Hipertensão/complicações , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/patologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Mutação com Perda de Função/genética , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/metabolismo , Obesidade/patologia , Receptor Tipo 4 de Melanocortina/genética , Fatores de Risco , Adulto Jovem
16.
Diabetes ; 55(3): 856-61, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16505255

RESUMO

Adiponectin is a metabolic link between adipose tissue and insulin action, mediating part of obesity-associated insulin resistance and type 2 diabetes. Two adiponectin receptors have been identified, and we investigated whether sequence variations in adiponectin receptor 1 (ADIPOR1) and adiponectin receptor 2 (ADIPOR2) genes could contribute to the genetic risk for type 2 diabetes in a case-control study of 1,498 Caucasian subjects. We sequenced the putative functional regions of the two genes in 48 subjects and selected single nucleotide polymorphisms (SNPs) from the public database. Five SNPs in ADIPOR1 and 12 in ADIPOR2 were tested for association with type 2 diabetes. No SNP of ADIPOR1 showed association in any of the samples from the French population. In contrast, three SNPs of ADIPOR2 showed nominal evidence for association with type 2 diabetes before correction for multiple testing (odds ratio [OR] 1.29-1.37, P = 0.034-0.014); only rs767870, located in intron 6, was replicated in an additional diabetes dataset (n = 636, OR 1.29, P = 0.020) with significant allelic association from the overall meta-analysis of 2,876 subjects (adjusted OR 1.25 [95% CI 1.07-1.45], P = 0.0051). In conclusion, our data suggest a modest contribution of ADIPOR2 variants in diabetes risk in the French population.


Assuntos
Diabetes Mellitus Tipo 2/genética , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular/genética , População Branca/genética , Adulto , Idoso , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Adiponectina
17.
Diabetes ; 55(4): 1171-6, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16567544

RESUMO

One of the most replicated loci influencing type 2 diabetes-related quantitative traits (quantitative trait loci [QTL]) is on chromosome 3q27 and modulates both type 2 diabetes-and metabolic syndrome-associated phenotypes. A QTL for type 2 diabetes age of onset (logarithm of odds [LOD] score = 3.01 at D3S3686, P = 0.0001) was identified in a set of French families. To assess genetic variation underlying both age-of-onset QTL and our previous type 2 diabetes linkage in a 3.87-Mb interval, we explored 36 single nucleotide polymorphisms (SNPs) in two biologically relevant candidate genes for glucose homeostasis, kininogen (KNG1), and eukaryotic translation initiation factor 4alpha2 (EIF4A2). Analysis of 148 families showed significant association of a frequent SNP, rs266714, located 2.47 kb upstream of EIF4A2, with familial type 2 diabetes (family-based association test, P = 0.0008) and early age of onset (P = 0.0008). This SNP also contributes to both age-of-onset QTL (1.13 LOD score decrease P = 0.02) and type 2 diabetes linkage (genotype identical-by-descent sharing test, P = 0.02). However, no association was observed in three independent European diabetic cohorts. EIF4A2 controls specific mRNA translation and protein synthesis rate in pancreatic beta-cells, and our data indicates that EIF4A2 is downregulated by high glucose in rat beta-INS832/13 cells. The potential role of EIF4A2 in glucose homeostasis and its putative contribution to type 2 diabetes in the presence of metabolic stress will require further investigation.


Assuntos
Cromossomos Humanos Par 3 , Diabetes Mellitus Tipo 2/genética , Fator de Iniciação 4A em Eucariotos/genética , Idade de Início , Mapeamento Cromossômico , Feminino , França , Genes Dominantes , Genes Recessivos , Humanos , Cininogênios/genética , Masculino , Núcleo Familiar , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Razão de Masculinidade
18.
BMC Med Genet ; 7: 44, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16677372

RESUMO

BACKGROUND: The protein tyrosine phosphatase-1B, a negative regulator for insulin and leptin signalling, potentially modulates glucose and energy homeostasis. PTP1B is encoded by the PTPN1 gene located on chromosome 20q13 showing linkage with type 2 diabetes (T2D) in several populations. PTPN1 gene variants have been inconsistently associated with T2D, and the aim of our study was to investigate the effect of PTPN1 genetic variations on the risk of T2D, obesity and on the variability of metabolic phenotypes in the French population. METHODS: Fourteen single nucleotide polymorphisms (SNPs) spanning the PTPN1 locus were selected from previous association reports and from HapMap linkage disequilibrium data. SNPs were evaluated for association with T2D in two case-control groups with 1227 cases and 1047 controls. Association with moderate and severe obesity was also tested in a case-control study design. Association with metabolic traits was evaluated in 736 normoglycaemic, non-obese subjects from a general population. Five SNPs showing a trend towards association with T2D, obesity or metabolic parameters were investigated for familial association. RESULTS: From 14 SNPs investigated, only SNP rs914458, located 10 kb downstream of the PTPN1 gene significantly associated with T2D (p = 0.02 under a dominant model; OR = 1.43 [1.06-1.94]) in the combined sample set. SNP rs914458 also showed association with moderate obesity (allelic p = 0.04; OR = 1.2 [1.01-1.43]). When testing for association with metabolic traits, two strongly correlated SNPs, rs941798 and rs2426159, present multiple consistent associations. SNP rs2426159 exhibited evidence of association under a dominant model with glucose homeostasis related traits (p = 0.04 for fasting insulin and HOMA-B) and with lipid markers (0.02 = p = 0.04). Moreover, risk allele homozygotes for this SNP had an increased systolic blood pressure (p = 0.03). No preferential transmission of alleles was observed for the SNPs tested in the family sample. CONCLUSION: In our study, PTPN1 variants showed moderate association with T2D and obesity. However, consistent associations with metabolic variables reflecting insulin resistance and dyslipidemia are found for two intronic SNPs as previously reported. Thus, our data indicate that PTPN1 variants may modulate the lipid profile, thereby influencing susceptibility to metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2/genética , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Proteínas Tirosina Fosfatases/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , França , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Proteína Tirosina Fosfatase não Receptora Tipo 1
19.
PLoS One ; 10(11): e0143373, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26599467

RESUMO

Molecular diagnosis of monogenic diabetes and obesity is of paramount importance for both the patient and society, as it can result in personalized medicine associated with a better life and it eventually saves health care spending. Genetic clinical laboratories are currently switching from Sanger sequencing to next-generation sequencing (NGS) approaches but choosing the optimal protocols is not easy. Here, we compared the sequencing coverage of 43 genes involved in monogenic forms of diabetes and obesity, and variant detection rates, resulting from four enrichment methods based on the sonication of DNA (Agilent SureSelect, RainDance technologies), or using enzymes for DNA fragmentation (Illumina Nextera, Agilent HaloPlex). We analyzed coding exons and untranslated regions of the 43 genes involved in monogenic diabetes and obesity. We found that none of the methods achieves yet full sequencing of the gene targets. Nonetheless, the RainDance, SureSelect and HaloPlex enrichment methods led to the best sequencing coverage of the targets; while the Nextera method resulted in the poorest sequencing coverage. Although the sequencing coverage was high, we unexpectedly found that the HaloPlex method missed 20% of variants detected by the three other methods and Nextera missed 10%. The question of which NGS technique for genetic diagnosis yields the highest diagnosis rate is frequently discussed in the literature and the response is still unclear. Here, we showed that the RainDance enrichment method as well as SureSelect, which are both based on the sonication of DNA, resulted in a good sequencing quality and variant detection, while the use of enzymes to fragment DNA (HaloPlex or Nextera) might not be the best strategy to get an accurate sequencing.


Assuntos
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Obesidade/diagnóstico , Obesidade/genética , Patologia Molecular/métodos , Pareamento de Bases/genética , Éxons/genética , Humanos , Íntrons/genética , Regiões não Traduzidas/genética
20.
Obesity (Silver Spring) ; 22(12): 2621-4, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25234154

RESUMO

OBJECTIVE: Several deletions of chromosome 6q, including SIM1, were reported in obese patients with developmental delay. Furthermore, rare loss-of-function SIM1 mutations were shown to contribute to severe obesity, yet the role of these mutations in developmental delay remained unclear. Here, SIM1 in children with neurodevelopmental abnormalities was screened and the functional effect of the identified mutations was investigated. METHODS: SIM1 was sequenced in 283 children presenting with developmental delay and at least overweight. The effect of the identified mutations on SIM1 transcriptional activity in stable human cell lines was assessed using luciferase gene reporter assays. RESULTS: Two novel mutations (c.886A>G/p.R296G and c.925A>G/p.S309G) in two boys with variable degrees of cognitive deficits and weight issues were identified. The child mutated for p.R296G presented with a generally more severe phenotype than the p.S309G carrier (obesity, compulsive eating, neonatal hypotonia versus overweight only), while both mutations had strong loss-of-function effects on SIM1 transcriptional activity. CONCLUSIONS: Severe loss-of-function SIM1 mutations can be associated with a spectrum of developmental delay phenotypes and obesity. Our data suggest that SIM1 sequencing should be performed more systematically in patients with developmental delay, even in the absence of severe obesity. These results deserve further SIM1 screening studies.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Deficiências do Desenvolvimento/genética , Obesidade Mórbida/genética , Proteínas Repressoras/genética , Criança , Análise Mutacional de DNA , Deficiências do Desenvolvimento/complicações , Feminino , Humanos , Luciferases/genética , Masculino , Obesidade Mórbida/complicações , Obesidade Mórbida/fisiopatologia , Fenótipo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA