RESUMO
Somatosensory coding in rodents has been mostly studied in the whisker system and hairy skin, whereas the function of low-threshold mechanoreceptors (LTMRs) in rodent glabrous skin has received scant attention, unlike in primates where glabrous skin has been the focus. The relative activation of different LTMR subtypes carries information about vibrotactile stimuli, as does the rate and temporal patterning of LTMR spikes. Rate coding depends on the probability of a spike occurring on each stimulus cycle (reliability) whereas temporal coding depends on the timing of spikes relative to the stimulus cycle (precision). Using in vivo extracellular recordings in male rats and mice of either sex, we measured the reliability and precision of LTMR responses to tactile stimuli including sustained pressure and vibration. Similar to other species, rodent LTMRs were separated into rapid-adapting (RA) or slow-adapting (SA) based on their response to sustained pressure. However, unlike the dichotomous frequency preference characteristic of RA1 and RA2/Pacinian afferents in other species, rodent RAs fell along a continuum. Fitting generalized linear models (GLMs) to experimental data reproduced the reliability and precision of rodent RAs. The resulting model parameters highlight key mechanistic differences across the RA spectrum; specifically, the integration window of different RAs transitions from wide to narrow as tuning preferences across the population move from low to high frequencies. Our results show that rodent RAs can support both rate and temporal coding, but their heterogeneity suggests that co-activation patterns play a greater role in population coding than for dichotomously tuned primate RAs.Significance Statement Our sense of touch starts with activation of nerve fibres in the skin. Although response properties of various fibre types are well-established in other species (e.g. primates), quantitative characterization in rats and mice is limited. To fill this gap, we performed a comprehensive electrophysiological investigation into the coding properties of tactile fibres in rodent non-hairy skin and then simulated these fibres to explain differences in their responses. We show that rodent tactile fibres resemble those from other species, but that their heterogeneity at the population level may differ, with potentially important implications for encoding of touch. Simulations reveal intrinsic mechanisms that support this heterogeneity and provide a useful tool to explore somatosensation in rodents.
RESUMO
Excitatory glutamatergic NMDA receptors (NMDARs) are key regulators of spinal pain processing, and yet the biophysical properties of NMDARs in dorsal horn nociceptive neurons remain poorly understood. Despite the clinical implications, it is unknown whether the molecular and functional properties of synaptic NMDAR responses are conserved between males and females or translate from rodents to humans. To address these translational gaps, we systematically compared individual and averaged excitatory synaptic responses from lamina I pain-processing neurons of adult Sprague-Dawley rats and human organ donors, including both sexes. By combining patch-clamp recordings of outward miniature excitatory postsynaptic currents with non-biased data analyses, we uncovered a wide range of decay constants of excitatory synaptic events within individual lamina I neurons. Decay constants of synaptic responses were distributed in a continuum from 1-20 ms to greater than 1000 ms, suggesting that individual lamina I neurons contain AMPA receptor (AMPAR)-only as well as GluN2A-, GluN2B- and GluN2D-NMDAR-dominated synaptic events. This intraneuronal heterogeneity in AMPAR- and NMDAR-mediated decay kinetics was observed across sex and species. However, we discovered an increased relative contribution of GluN2A-dominated NMDAR responses at human lamina I synapses compared with rodent synapses, suggesting a species difference relevant to NMDAR subunit-targeting therapeutic approaches. The conserved heterogeneity in decay rates of excitatory synaptic events within individual lamina I pain-processing neurons may enable synapse-specific forms of plasticity and sensory integration within dorsal horn nociceptive networks. KEY POINTS: Synaptic NMDA receptors (NMDARs) in spinal dorsal horn nociceptive neurons are key regulators of pain processing, but it is unknown whether their functional properties are conserved between males and females or translate from rodents to humans. In this study, we compared individual excitatory synaptic responses from lamina I pain-processing neurons of male and female adult Sprague-Dawley rats and human organ donors. Individual lamina I neurons from male and female rats and humans contain AMPA receptor-only as well as GluN2A, GluN2B- and GluN2D-NMDAR-dominated synaptic events. This may enable synapse-specific forms of plasticity and sensory integration within dorsal horn nociceptive networks. Human lamina I synapses have an increased relative contribution of GluN2A-dominated NMDAR responses compared with rodent synapses. These results uncover a species difference relevant to NMDAR subunit-targeting therapeutic approaches.
Assuntos
Potenciais Pós-Sinápticos Excitadores , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Masculino , Feminino , Humanos , Ratos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Adulto , Sinapses/fisiologia , Pessoa de Meia-Idade , Caracteres Sexuais , Dor/fisiopatologia , Dor/metabolismo , Células do Corno Posterior/fisiologia , Células do Corno Posterior/metabolismo , Receptores de AMPA/metabolismo , Receptores de AMPA/fisiologiaRESUMO
Pain in rodents is often inferred from their withdrawal from noxious stimulation. Threshold stimulus intensity or response latency is used to quantify pain sensitivity. This usually involves applying stimuli by hand and measuring responses by eye, which limits reproducibility and throughput. We describe a device that standardizes and automates pain testing by providing computer-controlled aiming, stimulation, and response measurement. Optogenetic and thermal stimuli are applied using blue and infrared light, respectively. Precise mechanical stimulation is also demonstrated. Reflectance of red light is used to measure paw withdrawal with millisecond precision. We show that consistent stimulus delivery is crucial for resolving stimulus-dependent variations in withdrawal and for testing with sustained stimuli. Moreover, substage video reveals "spontaneous" behaviors for consideration alongside withdrawal metrics to better assess the pain experience. The entire process was automated using machine learning. RAMalgo (reproducible automated multimodal algometry) improves the standardization, comprehensiveness, and throughput of preclinical pain testing.