Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Appl Clin Med Phys ; 21(3): 94-107, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32101368

RESUMO

PURPOSE: Dose-volume histogram (DVH) measurements have been integrated into commercially available quality assurance systems to provide a metric for evaluating accuracy of delivery in addition to gamma analysis. We hypothesize that tumor control probability and normal tissue complication probability calculations can provide additional insight beyond conventional dose delivery verification methods. METHODS: A commercial quality assurance system was used to generate DVHs of treatment plan using the planning CT images and patient-specific QA measurements on a phantom. Biological modeling was performed on the DVHs produced by both the treatment planning system and the quality assurance system. RESULTS: The complication-free tumor control probability, P+ , has been calculated for previously treated intensity modulated radiotherapy (IMRT) patients with diseases in the following sites: brain (-3.9% ± 5.8%), head-neck (+4.8% ± 8.5%), lung (+7.8% ± 1.3%), pelvis (+7.1% ± 12.1%), and prostate (+0.5% ± 3.6%). CONCLUSION: Dose measurements on a phantom can be used for pretreatment estimation of tumor control and normal tissue complication probabilities. Results in this study show how biological modeling can be used to provide additional insight about accuracy of delivery during pretreatment verification.


Assuntos
Modelos Biológicos , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
2.
J BUON ; 23(5): 1460-1466, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30570873

RESUMO

PURPOSE: To develop and validate an intensity modulated radiation therapy (IMRT) treatment plan quantitative score using QUANTEC dose/volume parameters to assess plan quality. METHODS: 132 IMRT and volumetric modulated Arc therapy (VMAT) patient plans of various treatment sites were evaluated. The optimized plan's dose volume histogram (DVH) was exported to Velocity for evaluation. The proposed scoring was based on calculating the shortest distance from the QUANTEC objective to the DVH line of each organ. Each plan was normalized against the ideal plan where the organs at risk (OARs) received no dose and hence the distance between the QUANTEC objective and the DVH line was maximized. These normalized scores enabled the comparison of the quality of plans across treatment sites and dosimetrists. The scores were plotted and statistically analyzed to serve as a basis for future research. RESULTS: The score for each treatment site was evaluated and the average percentage scores±SD were found to be 43.5 ± 21.0, 33.3 ± 31.7, 42.6 ± 23.3, 40.2 ± 24.4, 33.5 ± 23.5 for the sites of abdomen, brain, chest, head/neck, and pelvis respectively. Differences in scores between the treatment sites were largely attributed to OAR segmentation and proximity of the OAR to the planning target volume (PTV). Small score differences between dosimetrists were attributed to the number of plans they have completed. CONCLUSION: This approach allows comparison of patient treatments which will help improve patient care and treatment outcomes. A larger sample of treatment plans is being evaluated to investigate the effect of dosimetrist's experience on plan quality.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Radioterapia/métodos , Humanos , Radioterapia/normas , Dosagem Radioterapêutica
3.
J Appl Clin Med Phys ; 18(6): 123-129, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28944979

RESUMO

The purpose of this study is to perform dosimetric validation of Monaco treatment planning system version 5.1. The Elekta VersaHD linear accelerator with high dose rate flattening filter-free photon modes and electron energies was used in this study. The dosimetric output of the new Agility head combined with the FFF photon modes warranted this investigation into the dosimetric accuracy prior to clinical usage. A model of the VersaHD linac was created in Monaco TPS by Elekta using commissioned beam data including percent depth dose curves, beam profiles, and output factors. A variety of 3D conformal fields were created in Monaco TPS on a combined Plastic water/Styrofoam phantom and validated against measurements with a calibrated ion chamber. Some of the parameters varied including source to surface distance, field size, wedges, gantry angle, and depth for all photon and electron energies. In addition, a series of step and shoot IMRT, VMAT test plans, and patient plans on various anatomical sites were verified against measurements on a Delta4 diode array. The agreement in point dose measurements was within 2% for all photon and electron energies in the homogeneous phantom and within 3% for photon energies in the heterogeneous phantom. The mean ± SD gamma passing rates of IMRT test fields yielded 93.8 ± 4.7% based on 2% dose difference and 2 mm distance-to-agreement criteria. Eight previously treated IMRT patient plans were replanned in Monaco TPS and five measurements on each yielded an average gamma passing rate of 95% with 6.7% confidence limit based on 3%, 3 mm gamma criteria. This investigation on dosimetric validation ensures accuracy of modeling VersaHD linac in Monaco TPS thereby improving patient safety.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Humanos , Método de Monte Carlo , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
4.
J Appl Clin Med Phys ; 18(4): 172-179, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28585300

RESUMO

A patient specific quality assurance (QA) should detect errors that originate anywhere in the treatment planning process. However, the increasing complexity of treatment plans has increased the need for improvements in the accuracy of the patient specific pretreatment verification process. This has led to the utilization of higher resolution QA methods such as the electronic portal imaging device (EPID) as well as MLC log files and it is important to know the types of errors that can be detected with these methods. In this study, we will compare the ability of three QA methods (Delta4 ®, MU-EPID, Dynalog QA) to detect specific errors. Multileaf collimator (MLC) errors, gantry angle, and dose errors were introduced into five volumetric modulated arc therapy (VMAT) plans for a total of 30 plans containing errors. The original plans (without errors) were measured five times with each method to set a threshold for detectability using two standard deviations from the mean and receiver operating characteristic (ROC) derived limits. Gamma passing percentages as well as percentage error of planning target volume (PTV) were used for passing determination. When applying the standard 95% pass rate at 3%/3 mm gamma analysis errors were detected at a rate of 47, 70, and 27% for the Delta4 , MU-EPID and Dynalog QA respectively. When using thresholds set at 2 standard deviations from our base line measurements errors were detected at a rate of 60, 30, and 47% for the Delta4 , MU-EPID and Dynalog QA respectively. When using ROC derived thresholds errors were detected at a rate of 60, 27, and 47% for the Delta4 , MU-EPID and Dynalog QA respectively. When using dose to the PTV and the Dynalog method 11 of the 15 small MLC errors were detected while none were caught using gamma analysis. A combination of the EPID and Dynalog QA methods (scaling Dynalog doses using EPID images) matches the detection capabilities of the Delta4 by adding additional comparison metrics. These additional metrics are vital in relating the QA measurement to the dose received by the patient which is ultimately what is being confirmed.


Assuntos
Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Erros de Configuração em Radioterapia , Radioterapia de Intensidade Modulada/métodos , Humanos , Aceleradores de Partículas
5.
J Appl Clin Med Phys ; 16(3): 5283, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103490

RESUMO

In this project, we investigated the use of an electronic portal imaging device (EPID), together with the treatment planning system (TPS) and MLC log files, to determine the delivered doses to the patient and evaluate the agreement between the treatment plan and the delivered dose distribution. The QA analysis results are presented for 15 VMAT patients using the EPID measurements, the ScandiDos Delta4 dosimeter, and the beam fluence calculated from the multileaf collimator (MLC) log file. EPID fluence images were acquired in continuous acquisition mode for each of the patients and they were processed through an in-house MATLAB program to create an opening density matrix (ODM), which was used as the input fluence for the dose calculation in the TPS (Pinnacle3). The EPID used in this study was the aSi1000 Varian on a Novalis TX linac equipped with high-definition MLC. The actual MLC positions and gantry angles were retrieved from the MLC log files and the data were used to calculate the delivered dose distributions in Pinnacle. The resulting dose distributions were then compared against the corresponding planned dose distributions using the 3D gamma index with 3 mm/3% passing criteria. The ScandiDos Delta4 phantom was also used to measure a 2D dose distribution for all the 15 patients and a 2D gamma was calculated for each patient using the Delta4 software. The average 3D gamma using the EPID images was 96.1% ± 2.2%. The average 3D gamma using the log files was 98.7% ± 0.5%. The average 2D gamma from the Delta4 was 98.1% ± 2.1%. Our results indicate that the use of the EPID, combined with MLC log files and a TPS, is a viable method for QA of VMAT plans.


Assuntos
Neoplasias/radioterapia , Modelagem Computacional Específica para o Paciente , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Documentação/normas , Humanos , Modelos Anatômicos , Dosagem Radioterapêutica , Ecrans Intensificadores para Raios X/normas
6.
Med Phys ; 46(3): 1397-1407, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30702748

RESUMO

PURPOSE: With the advent of volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques, the requirement for more elaborate approaches in reviewing linac components' integrity has become even more stringent. A possible solution to this challenge is to employ the usage of log files generated during treatment. The log files generated by the new generation of Elekta linacs record events at a higher frequency (25 Hz) than their predecessors, which allows for retrospective analysis and identification of subtle changes and provides another means of quality assurance. The ability to track machine components based on log files for each treatment can allow for constant monitoring of fraction consistency in addition to machine reliability. Using Elekta Agility log files, a set of tests were developed to evaluate the reliability and robustness of the multileaf collimators (MLCs). METHODS: To evaluate Elekta log file utilization for linac MLC QA effectiveness, five MLC test patterns were constructed to review the effects of leaf velocity and acceleration on positional accuracy, including gravitational effects for the Elekta MLC system. Each test was run five times in a particular setting to obtain reproducibility data and statistical averages. This study was performed on two identical Versa HD machines, each delivering a full set of test plans with all possible variations. Plans were delivered using Elekta's iCOMcat software and recorded log files were extracted. Log files were reformatted for readability and automatically analyzed in Matlab® . RESULTS: The Elekta Agility MLC system was shown to be capable of obtaining speeds within the range of 5-35 mm/s. MLC step and shoot tests have demonstrated the MLC system's capability of having positional repeatability, averaging 0.03- and 0.08-mm offsets with and without gravitational effects, respectively. The IMRT-specific tests have shown that gravitational effects are negligible with all positional tests averaging 0.5-mm offsets. The largest speed root-mean-square error (RMSE) for the MLC system was found at the maximum speed of 35 mm/s with an average error of 0.8 mm. For slower speeds, the value was found to be much lower. CONCLUSION: Utilizing log files has demonstrated the feasibility for higher precision of MLC motions to be reviewed, based on the performance tests that were instituted. Log files provide insight on the effects of friction, acceleration, and gravity, with MU's delivered that previously could not be reviewed in such detail. Based on our results, log file-based QA has enhanced our ability to review performance, functionality, and perform QA on Elekta's MLC system.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Software , Humanos , Controle de Qualidade , Dosagem Radioterapêutica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA