Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Genet ; 53(5): 348-55, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26831754

RESUMO

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is associated with an epigenetic defect on 4qter. Two clinically indistinguishable forms of FSHD are known, FSHD1 and FSHD2. FSHD1 is caused by contraction of the highly polymorphic D4Z4 macrosatellite repeat array on chromosome 4q35. FSHD2 is caused by pathogenic mutations of the SMCHD1 gene.Both genetic defects lead to D4Z4 DNA hypomethylation. In the presence of a polymorphic polyadenylation signal (PAS), DNA hypomethylation leads to inappropriate expression of the D4Z4-encoded DUX4 transcription factor in skeletal muscle. Currently, hypomethylation is not diagnostic per se because of the interference of non-pathogenic arrays and the lack of information about the presence of DUX4-PAS. METHODS: We investigated, by bisulfite sequencing, the DNA methylation levels of the region distal to the D4Z4 array selectively in PAS-positive alleles. RESULTS: Comparison of FSHD1, FSHD2 and Control subjects showed a highly significant difference of methylation levels in all CpGs tested. Importantly, using a cohort of 112 samples, one of these CpGs (CpG6) is able to discriminate the affected individuals with a sensitivity of 0.95 supporting this assay potential for FSHD diagnosis. Moreover, our study showed a relationship between PAS-specific methylation and severity of the disease. CONCLUSIONS: These data point to the CpGs distal to the D4Z4 array as a critical region reflecting multiple factors affecting the epigenetics of FSHD. Additionally, methylation analysis of this region allows the establishment of a rapid and sensitive tool for FSHD diagnosis.


Assuntos
Alelos , Cromossomos Humanos Par 4 , Metilação de DNA , Músculo Esquelético , Distrofia Muscular Facioescapuloumeral/genética , Epigenômica , Humanos
2.
FASEB J ; 27(9): 3466-77, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23682120

RESUMO

ARCHAEA-ExPRESs is an mRNA modification technology that makes use of components derived from the Archaeon Methanocaldococcus jannaschii, namely the tRNA splicing endonuclease (MJ-EndA) and its natural substrate, the bulge-helix-bulge (BHB) structure (1). These components can perform both cis- and trans-splicing in cellular and animal models and may provide a convenient way to modulate gene expression using components independent of cellular regulatory networks. To use MJ-EndA in stable expression mammalian systems, we developed variants characterized by high efficiency and sustainable in vivo activity. The MJ-EndA variants were created by the introduction of proper localization signals followed by mutagenesis and direct selection in mammalian cells. Of note, enzyme selection used an in vivo selection method based on puromycin resistance conferred to cells by BHB-mediated intron splicing from an out-of-frame puromycin N-acetyl transferase (PAC) gene. This approach yielded several endonuclease variants, the best of which showed 40-fold higher activity compared to the parental enzyme and stable processing of 30% of the target mRNA. Notably, these variants showed complete compatibility with long-term expression in mammalian cells, suggesting that they may be usefully applied in functional genomics and genetically modified animal models.


Assuntos
Archaea/enzimologia , Archaea/genética , Proteínas Arqueais/metabolismo , Endonucleases/metabolismo , Splicing de RNA/genética , Proteínas Arqueais/genética , Western Blotting , Linhagem Celular , Endonucleases/genética , Imunofluorescência , Humanos , Reação em Cadeia da Polimerase
3.
FASEB J ; 24(8): 2976-84, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20371619

RESUMO

Effectiveness of trans-splicing-mediated mRNA reprogramming depends on specificity and efficiency. We have previously developed a new strategy (ARCHAEA-ExPRESs) that uses a tRNA endonuclease derived from Archaea and its natural substrate, the bulge-helix-bulge (BHB) structure. ARCHAEA-ExPRESs provides increased specificity in functional targeting. In fact, this system is based on a double check, the base pairing and the formation of a BHB structure between the target mRNA and the targeting RNA. In this study, we demonstrate the high specificity of ARCHAEA-ExPRESs by tagging the endogenous alpha-tubulin 4 via trans-splicing. Alpha-tubulin 4 belongs to a gene family sharing high degree of nucleotide sequence homology. The formation of a perfect BHB structure between targeting RNAs and the isotype alpha-tubulin 4 enables selective trans-splicing. Most important, ARCHAEA-ExPRESs functionality is conserved in vivo following transient expression of archaeal tRNA endonuclease in mouse liver. Production of the recombinant protein is strictly dependent on the expression of the archaeal endonuclease, and the efficiency of the system depends on the relative amount of the target and targeting mRNAs. These data prove the effectiveness of ARCHAEA-ExPRESs in an endogenous highly demanding context and disclose the possibility to utilize this system in a variety of technological or therapeutic applications.


Assuntos
Técnicas Genéticas , RNA Mensageiro/genética , Trans-Splicing , Tubulina (Proteína)/genética , Animais , Archaea/enzimologia , Endonucleases , Fígado/metabolismo , Métodos , Camundongos
4.
Front Neurol ; 9: 1027, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546343

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is a neuromuscular disorder which is typically transmitted by an autosomal dominant pattern, although reduced penetrance and sporadic cases caused by de novo mutations, are often observed. FSHD may be caused by a contraction of a repetitive element, located on chromosome 4 (4q35). This locus is named D4Z4 and consists of 11 to more than 100 repeated units (RU). The D4Z4 is normally hypermethylated and the genes located on this locus are silenced. In case of FSHD, the D4Z4 region is characterized by 1-10 repeats and results in the region being hypomethylated. However, 5% of FSHD cases do not carry the short allele of D4Z4 region. To date, two forms of FSHD (FSHD1 and FSHD2) are known. FSHD2 is usually observed in patients without the D4Z4 fragment contraction and carrying variants in SMCHD1 (18p11.32) gene. We report the case of a young adult patient who shows severe symptoms of FSHD. Preliminary genetic analysis did not clarify the phenotype, therefore we decided to study the family members by genetic and epigenetic approaches. The analysis of D4Z4 fragment resulted to be 8 RU in the affected proband and in his father; 26 RU in the mother and 25 RU in the maternal uncle. SMCHD1 analysis revealed a heterozygous variation within the exon 41. The variant was detected in the proband, her mother and the uncle. Furthermore, epigenetic analysis of CpG6 methylation regions showed significant hypomethylation in the affected patient (54%) and in the mother (56%), in contrast to the father (88%) and the uncle (81%) carrying higher methylation levels. The analysis of DR1 methylation levels reported hypomethylation for the proband (19%), the mother (11%), and the uncle (16%). The father showed normal DR1 methylation levels (>30%). Given these results, the combined inheritance of SMCHD1 variant and the short fragment might explain the severe FSHD phenotype displayed by the proband. On this subject, SMCHD1 analysis should be promoted in a larger number of patients, even in presence of D4Z4 contractions, to facilitate the genotype-phenotype correlation as well as, to enable a more precise diagnosis and prognosis of the disease.

5.
Nat Biotechnol ; 21(12): 1499-504, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14595336

RESUMO

The tRNA endonuclease from the archaebacterium Methanococcus jannaschii (MJ endonuclease) can cleave RNAs forming specific bulge-helix-bulge (BHB) structures recognized by the enzyme. The resulting cleavage products are subsequently joined together by an endogenous ligase. We demonstrate the potential of using this strategy for repairing RNA in higher organisms by expressing the enzyme in mouse cells. Reporter target mRNAs modified with 17-nucleotide introns, flanked by sequences capable of forming BHB structures in cis, were expressed in mouse cells. RNA molecules that can form BHB substrates in trans with targeted mRNAs were also designed. Co-transfection of mouse cells with plasmids expressing these RNAs and the MJ endonuclease led to formation of RNA chimeras in which the target and exogenous RNA were recombined across the BHB. This technology is not limited to mRNA, but could in principle be used to destroy, modify or restore the function of a vast repertoire of RNA species or to join selectable tags to target RNAs.


Assuntos
Endorribonucleases/genética , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Mathanococcus/enzimologia , RNA Mensageiro/genética , Recombinação Genética/genética , Trans-Splicing/genética , Células 3T3 , Animais , Humanos , Camundongos , Mutação/genética
6.
J Clin Invest ; 127(4): 1531-1545, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28263188

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder that is characterized by extreme variability in symptoms, with females being less severely affected than males and presenting a higher proportion of asymptomatic carriers. The sex-related factors involved in the disease are not known. Here, we have utilized myoblasts isolated from FSHD patients (FSHD myoblasts) to investigate the effect of estrogens on muscle properties. Our results demonstrated that estrogens counteract the differentiation impairment of FSHD myoblasts without affecting cell proliferation or survival. Estrogen effects are mediated by estrogen receptor ß (ERß), which reduces chromatin occupancy and transcriptional activity of double homeobox 4 (DUX4), a protein whose aberrant expression has been implicated in FSHD pathogenesis. During myoblast differentiation, we observed that the levels and activity of DUX4 increased progressively and were associated with its enhanced recruitment in the nucleus. ERß interfered with this recruitment by relocalizing DUX4 in the cytoplasm. This work identifies estrogens as a potential disease modifier that underlie sex-related differences in FSHD by protecting against myoblast differentiation impairments in this disease.


Assuntos
Estradiol/fisiologia , Estrogênios/fisiologia , Proteínas de Homeodomínio/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Mioblastos/fisiologia , Diferenciação Celular , Células Cultivadas , Receptor beta de Estrogênio/metabolismo , Expressão Gênica , Humanos , Distrofia Muscular Facioescapuloumeral/patologia , Transporte Proteico , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA