RESUMO
Galleria mellonella has been described as a cheap and an easy-to-reproduce model for the study of fungal infections. We hypothesized that yeasts with higher virulence potential decrease survival and significantly trigger an immune response in G. mellonella through the regulation of innate immunity-related genes encoding antimicrobial peptides (AMPs) such as gallerimycin and galiomicin. Candida albicans SC5314 and Candida dubliniensis CBS 7987, selected because of their different virulence potential, were used for a killing assay followed by the determination of gene expression using qPCR. In vivo results confirmed a significantly (p = 0.0321) lower pathogenicity for C. dubliniensis than for C. albicans. Accordingly, the induction of C. dubliniensis AMPs was lower at all the selected time points post-infection (1 h, 24 h, 48 h). Moreover, we observed an extremely high regulation of the galiomicin gene compared to the gallerimycin one, suggesting a different role of the tested AMPs in protecting G. mellonella from candidiasis.