Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gene Ther ; 31(3-4): 85-94, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37696982

RESUMO

Focused Ultrasound Blood-Brain Barrier Opening (FUS-BBBO) can deliver adeno-associated viral vectors (AAVs) to treat genetic disorders of the brain. However, such disorders often affect large brain regions. Moreover, the applicability of FUS-BBBO in the treatment of brain-wide genetic disorders has not yet been evaluated. Herein, we evaluated the transduction efficiency and safety of opening up to 105 sites simultaneously. Increasing the number of targeted sites increased gene delivery efficiency at each site. We achieved transduction of up to 60% of brain cells with comparable efficiency in the majority of the brain regions. Furthermore, gene delivery with FUS-BBBO was safe even when all 105 sites were targeted simultaneously without negative effects on animal weight or neuronal loss. To evaluate the application of multi-site FUS-BBBO for gene therapy, we used it for gene editing using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system and found effective gene editing, but also a loss of neurons at the targeted sites. Overall, this study provides a brain-wide map of transduction efficiency, shows the synergistic effect of multi-site targeting on transduction efficiency, and is the first example of large brain volume gene editing after noninvasive gene delivery with FUS-BBBO.


Assuntos
Edição de Genes , Terapia Genética , Animais , Técnicas de Transferência de Genes , Barreira Hematoencefálica , Encéfalo , Sistemas CRISPR-Cas
2.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511512

RESUMO

Mesenchymal stem cell (MSC)-seeded polymeric perivascular wraps have been shown to enhance arteriovenous fistula (AVF) maturation. However, the wraps' radiolucency makes their placement and integrity difficult to monitor. Through electrospinning, we infused gold nanoparticles (AuNPs) into polycaprolactone (PCL) wraps to improve their radiopacity and tested whether infusion affects the previously reported beneficial effects of the wraps on the AVF's outflow vein. Sprague Dawley rat MSCs were seeded on the surface of the wraps. We then compared the effects of five AVF treatments-no perivascular wrap (i.e., control), PCL wrap, PCL + MSC wrap, PCL-Au wrap, and PCL-Au + MSC wrap-on AVF maturation in a Sprague Dawley rat model of chronic kidney disease (n = 3 per group). Via micro-CT, AuNP-infused wraps demonstrated a significantly higher radiopacity compared to that of the wraps without AuNPs. Wraps with and without AuNPs equally reduced vascular stenoses, as seen via ultrasonography and histomorphometry. In the immunofluorescence analysis, representative MSC-seeded wraps demonstrated reduced neointimal staining for markers of infiltration with smooth muscle cells (α-SMA), inflammatory cells (CD45), and fibroblasts (vimentin) compared to that of the control and wraps without MSCs. In conclusion, AuNP infusion allows in vivo monitoring via micro-CT of MSC-seeded polymeric wraps over time, without compromising the benefits of the wrap for AVF maturation.


Assuntos
Fístula Arteriovenosa , Células-Tronco Mesenquimais , Nanopartículas Metálicas , Ratos , Animais , Ouro , Ratos Sprague-Dawley , Implantes Absorvíveis , Fístula Arteriovenosa/terapia
3.
bioRxiv ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778466

RESUMO

Background: To address high rates of arteriovenous fistula (AVF) failure, a mesenchymal stem cell (MSC)-seeded polymeric perivascular wrap has been developed to reduce neointimal hyperplasia (NIH) and enhance AVF maturation in a rat model. However, the wrap's radiolucency makes its placement and integrity difficult to monitor. Purpose: In this study, we infused gold nanoparticles (AuNPs) into the polymeric perivascular wrap to improve its radiopacity and tested the effect of infusion on the previously reported beneficial effects of the polymeric wrap on the AVF outflow vein. Materials and Methods: We fabricated a polymeric perivascular wrap made of polycaprolactone (PCL) infused with AuNPs via electrospinning. Sprague-Dawley rat mesenchymal stem cells (MSCs) were seeded on the surface of the wraps. We then compared the effect of five AVF treatments-no perivascular wrap (i.e., control), PCL wrap, PCL+MSC wrap, PCL-Au wrap, and PCL-Au+MSC wrap-on AVF maturation in a Sprague-Dawley rat model of chronic kidney disease (n=3 per group). Statistical significance was defined as p<.05, and one-way analysis of variance was performed using GraphPad Prism software. Results: On micro-CT, AuNP-infused wraps demonstrated significantly higher radiopacity compared to wraps without AuNPs. On ultrasonography, wraps with and without AuNPs equally reduced the wall-to-lumen ratio of the outflow vein, a marker of vascular stenosis. On histomorphometric analysis, wraps with and without AuNPs equally reduced the neointima-to- lumen ratio of the outflow vein, a measure of NIH. On immunofluorescence analysis, representative MSC-seeded wraps demonstrated reduced neointimal staining for markers of smooth muscle cells (α-SMA), inflammatory cells (CD45), and fibroblasts (vimentin) infiltration when compared to control and wraps without MSCs. Conclusion: Gold nanoparticle infusion allows the in vivo monitoring via micro-CT of a mesenchymal stem cell-seeded polymeric wrap over time without compromising the benefits of the wrap on arteriovenous fistula maturation. Summary Statement: Gold nanoparticle infusion enables in vivo monitoring via micro-CT of the placement and integrity over time of mesenchymal stem cell-seeded polymeric wrap supporting arteriovenous fistula maturation. Key Results: Gold nanoparticle (AuNP)-infused perivascular wraps demonstrated higher radiopacity on micro-CT compared with wraps without AuNPs after 8 weeks.AuNP-infused perivascular wraps equally improved the wall-to-lumen ratio of the outflow vein (a marker of vascular stenosis) when compared with wraps without AuNPs, as seen on US.AuNP-infused perivascular wraps equally reduced the neointima-to-lumen ratio of the outflow vein (a measure of neointimal hyperplasia) when compared with wraps without AuNPs, as seen on histomorphometry.

4.
Adv Healthc Mater ; 12(26): e2300960, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37395729

RESUMO

Bioresorbable perivascular scaffolds loaded with antiproliferative agents have been shown to enhance arteriovenous fistula (AVF) maturation by inhibiting neointimal hyperplasia (NIH). These scaffolds, which can mimic the three-dimensional architecture of the vascular extracellular matrix, also have an untapped potential for the local delivery of cell therapies against NIH. Hence, an electrospun perivascular scaffold from polycaprolactone (PCL) to support mesenchymal stem cell (MSC) attachment and gradual elution at the AVF's outflow vein is fabricated. Chronic kidney disease (CKD) in Sprague-Dawley rats is induced by performing 5/6th nephrectomy, then AVFs for scaffold application are created. The following groups of CKD rats are compared: no perivascular scaffold (i.e., control), PCL alone, and PCL+MSC scaffold. PCL and PCL+MSC significantly improve ultrasonographic (i.e., luminal diameter, wall-to-lumen ratio, and flow rate) and histologic (i.e., neointima-to-lumen ratio, neointima-to-media ratio) parameters compared to control, with PCL+MSC demonstrating further improvement in these parameters compared to PCL alone. Moreover, only PCL+MSC significantly reduces 18 F-fluorodeoxyglucose uptake on positron emission tomography. These findings suggest that adding MSCs promotes greater luminal expansion and potentially reduces the inflammatory process underlying NIH. The results demonstrate the utility of mechanical support loaded with MSCs at the outflow vein immediately after AVF formation to support maturation by minimizing NIH.


Assuntos
Fístula Arteriovenosa , Derivação Arteriovenosa Cirúrgica , Células-Tronco Mesenquimais , Insuficiência Renal Crônica , Ratos , Animais , Hiperplasia/patologia , Ratos Sprague-Dawley , Neointima/patologia , Implantes Absorvíveis , Tomografia Computadorizada por Raios X , Insuficiência Renal Crônica/terapia , Insuficiência Renal Crônica/patologia , Fístula Arteriovenosa/patologia , Células-Tronco Mesenquimais/patologia , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA