Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Microbiol ; 17(7): 2352-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25367625

RESUMO

Plant-associated microorganisms affect the health of their hosts in diverse ways, yet the distribution of these organisms within individual plants remains poorly understood. To address this knowledge gap, we assessed the spatial variability in bacterial community diversity and composition found on and in aboveground tissues of individual Ginkgo biloba trees. We sampled bacterial communities from > 100 locations per tree, including leaf, branch and trunk samples and used high-throughput sequencing of the 16S rRNA gene to determine the diversity and composition of these communities. Bacterial community structure differed strongly between bark and leaf samples, with bark samples harbouring much greater bacterial diversity and a community composition distinct from leaves. Within sample types, we observed clear spatial patterns in bacterial diversity and community composition that corresponded to the samples' proximity to the exterior of the tree. The composition of the bacterial communities found on trees is highly variable, but this variability is predictable and dependent on sampling location. Moreover, this work highlights the importance of carefully considering plant spatial structure when characterizing the microbial communities associated with plants and their impacts on plant hosts.


Assuntos
Bactérias/genética , Biodiversidade , Ginkgo biloba/microbiologia , Folhas de Planta/microbiologia , Árvores/microbiologia , Sequência de Bases , RNA Ribossômico 16S/genética , Análise de Sequência de RNA
3.
Mol Phylogenet Evol ; 25(2): 306-15, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12414312

RESUMO

We used sequences of nrDNA ITS and chloroplast gene matK to evaluate the monophyly of Empetrum and Corema and to examine phylogenetic relationships of the Empetraceae. Sequences of these two DNA markers were obtained for 11 plant samples, representing species of Empetrum from both the Southern and Northern Hemispheres, species and subspecies of Corema, and the monotypic Ceratiola. Sequences of four species of Rhododendron were used for rooting purposes. Our results show that species of Empetrum form a clade sister to the clade containing both Corema and Ceratiola. These two clades are strongly supported in both the matK and ITS trees, suggesting that Ceratiola is more closely related to Corema than to Empetrum, and is not of a hybrid origin between the ancestors of the latter two genera. In the matK tree, Corema conradii is more closely related to Ceratiola than to Corema album and C. album subsp. azoricum, whereas in the ITS tree, Ceratiola is allied with Corema album and C. album subsp. azoricum. This suggests that C. conradii might be a hybrid between ancestral populations of Ceratiola and C. album. The monophyly of Empetrum rejects the hypothesis of its independent origin in the two Hemispheres. Our trees also suggest the fact that the modern amphitropical distribution of Empetrum is the result of long distance dispersal, not of the vicarious events.


Assuntos
DNA Ribossômico/genética , Endorribonucleases/genética , Magnoliopsida/genética , Nucleotidiltransferases/genética , Filogenia , Cloroplastos/genética , Magnoliopsida/enzimologia , Rhododendron/genética
4.
Am J Bot ; 91(8): 1260-4, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21653483

RESUMO

Museum specimens collected in the past may be a valuable source of information on the response of species to climate change. This idea was tested by comparing the flowering times during the year 2003 of 229 living plants growing at the Arnold Arboretum in Boston, Massachusetts, USA, with 372 records of flowering times from 1885 to 2002 using herbarium specimens of the same individual plants. During this period, Boston experienced a 1.5°C increase in mean annual temperature. Flowering times became progressively earlier; plants flowered 8 d earlier from 1980 to 2002 than they did from 1900 to 1920. Most of this shift toward earlier flowering times is explained by the influence of temperature, especially temperatures in the months of February, March, April, and May, on flowering time. Plants with a long flowering duration appear to be as useful for detecting responses to changing temperatures as plants with a short flowering duration. Additional studies using herbarium specimens to detect responses to climate change could examine specimens from specific, intensively collected localities, such as mountain peaks, islands, and unique habitats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA